
Introduction
The dot com boom generated a lot of Web applications that suffered from poor

architecture and design. While these applications may function as required, they

are difficult to maintain and extend. Though only a few years old, some already

may be considered legacy code by the organizations that maintain them.

Organizations saddled with legacy Web applications often rewrite the applications

from scratch—an expensive and even risky proposition. What if an application could

instead be rewritten a bit at a time by the same team that maintains it?

This article is partly a case study of work done on my own team's application

and partly a catalog of techniques you can try on your own project. Our application

is a financial record-keeping product. End-users interact with it over the Web,

communicating with servers running at our site. Note that our application is a 

Java-based Web application, but these ideas may work for other environments.

30 BETTER SOFTWARE OCTOBER 2005 www.StickyMinds.com

Strangling 
Legacy Code

by Mike Thomas

Strangling 

IL
LU

ST
RA

TI
O

N
/T

H
O

M
 B

U
TT

N
ER



www.StickyMinds.com OCTOBER 2005 BETTER SOFTWARE 31www.StickyMinds.com OCTOBER 2005 BETTER SOFTWARE 31



Strangling Def ined
Well-known author Martin Fowler
coined the term “strangler application”
in a Weblog entry on his site. The term is
taken from nature: A “strangler vine” 
establishes itself on a host tree and over a
period of time slowly engulfs the tree until
the tree dies and only the vine remains.

In the development world, the analogy
is clear: A new application overtakes a
legacy application a bit at a time until the
old application no longer exists. Depending
on your situation, this technique can be
much more attractive and practical than
a “rewrite from scratch” approach.

The Strangling Attitude
Know Your Goals and Values

Strangling is an opportunity to change
your development culture. Therefore, 
before strangling an application, you
should have your goals and team values
figured out. 

Much as a company uses a vision
statement to direct corporate decision
making, your goals will provide decision-
making guidance as the project progresses.
At any crossroads in the process you
should consider whether a given decision
would bring the project closer to its goals.

For us, the primary goal is “agility,
leading to competitive advantage.” We
need to stay ahead of our competition,
and if we are held back by a limiting 
architecture, it is counter to that goal.
From this we derived subsidiary goals,
such as “promote testability,” “increase
flexibility,” and “decrease complexity.”
Thus, a given project decision or approach
should promote one of these goals.

Your team’s values determine how team
members carry out day-to-day activities.
We take a “pragmatic, not dogmatic” 
approach to Agile development, as follows:

! Pairing is encouraged, especially on
difficult or key code

! Test-driven development (TDD) is
preferred

! Avoid rules; use guidelines and
judgment

! Value openness and a willingness to
change approaches and refactor code

Jerry: If every instinct you have is wrong,
then the opposite would have to be right.

We can think of past application 
development sins as the instincts to be 
reversed, thus turning our application
into a winner. Keeping this principle in
mind while strangling our application 
produced a number of “opposites” that
led to the approaches described in the
“The Costanza Principle ‘Opposites’”
sidebar on page 40.

Have Guiding Architectural and
Design Principles

If your strangling project is to be a
success, you have to know exactly how
you’re going to avoid the architectural
and design problems that led you to
strangling in the first place. Therefore,
you’ll need a strong guiding architecture
and effective design guidelines to keep
the team in line.

How to Strangle
Strangling an application is a process of

pouring existing functionality into a new,
better architecture. To promote quality in
the strangler application, our team follows
architecture and design techniques derived
from The Costanza Principle.

Implement a Layered Architecture
One of the main reasons you’d strangle

an application is to improve its design.
Therefore, it’s important to have a guiding
architecture. In our case, we developed a
layered architecture—a set of “shoeboxes”
into which we organized our code.

A layered architecture promotes the
principle of “separation of concerns.”
That is, each layer has one—and only one—
architectural responsibility (as opposed to
functional responsibility) within the larger
structure of the application. Because each
layer has only one responsibility, the code
is simpler and more direct. A developer
looking at the data access objects (DAO)
layer knows to expect only database-
oriented code there.

In general, a given layer can access
only the layers directly below it, which
helps to manage dependencies. Good 
dependency management results in fewer
side effects when changes are made.
Thus, the system is easier to understand,
modify, and test. (See Figure 1.)

! Quality before development speed

! Strive for continuous improvement

! Testing is key

While we are not dogmatic about most
things, we make an exception in the area
of testing. Testability is a core value of the
team, and our testing team does a great
job of reminding us of that fact! Any piece
of strangler code has unit tests, FitNesse
tests (FitNesse is a free Web-based 
acceptance testing tool), and UI tests if 
applicable. When we touch legacy code, we
make an effort to introduce tests although
this often can be a challenge. (See the 
StickyNotes for a list of strangling tools.)

Stay on Course
Our high-level development directive is to

develop all new features in strangler code
while “pouring” existing functionality from
the legacy system into the new architecture.

We always knew this would occur in
fits and starts. Our metaphor for this is
pouring a thick milkshake from one 
container to another: Sometimes there will
be a smooth flow of smaller changes or
new features, along with an occasional
large, difficult-to-manage chunk of 
functionality. We also accept that we have
to stay realistic—some changes just naturally
have to be performed in the legacy system.
Each iteration-planning meeting involves
discussion about where and how to 
implement a given feature or bug fix. (See
the StickyNotes for suggested metrics to
keep your project on course.)

The team has a strong desire to avoid
the sins of the past (although team 
members have differing opinions on
what constitutes a “sin”). I have coined
a slightly tongue-in-cheek term for this
that also may be of use to your project. I
call it The Costanza Principle.

The Costanza Principle
Fans of the TV series Seinfeld will 

remember the character George Costanza
with a smile. George was the eternally 
unemployed, neurotic-but-likeable loser
who, in an episode titled “The Opposite,”
discovered the antidote to his loserhood:

George: Yeah, I should do the opposite,
I should.

32 BETTER SOFTWARE OCTOBER 2005 www.StickyMinds.com



www.StickyMinds.com OCTOBER 2005 BETTER SOFTWARE 33

Our strangler application is separated
into fairly traditional layers. Among
these are the user interface, services, and
DAO layers. Additionally, we treat our
legacy system as an independent layer.
With the exception of the legacy layer,
many properly architected business 
applications have layers similar to these.

The service layer implements the 
business and application logic in a 
manner transparent to the UI layer. The
implementation of the service layer may
call the legacy gateway in the process of
servicing a request; no strangler code
may call legacy code directly. 

However, legacy code is free to use
strangler code. To paraphrase Dr.
Strangelove, this is not only acceptable—
it is essential. We often will deprecate legacy
code in favor of strangler code. Legacy code
that depended upon the functionality pro-

use a physical design that prevents breaking
layer rules. Placing each layer’s code into a
separate source directory and separately
compiling each layer’s code achieves this.

Using the layers laid out in Figure 1,
we’d have directories for the user interface, 
services, domain objects, DAOs, common,
and legacy code, each of which would be
compiled separately. The nature of the 
dependencies between these layers gives us a
strict compilation order. (See the StickyNotes
for information on dependencies, inversion
of control, and lightweight containers.)

For example, the common package is
accessible to all other code (as noted in
Figure 2). Therefore, it must be compiled
first. If any code is placed in the common
package that has dependencies elsewhere,
the build will fail, preventing the creation
of a disallowed dependency.

Similarly, we build our legacy code last
because we’ve decided to allow legacy
code access to all other code. On the other
hand, no strangler code is allowed access
to legacy code. The build order enforces
this rule. (See Figure 2.)

Depend on Interfaces, not Classes
Using Java interfaces is an important

way to reduce coupling between Java
classes. Reduced coupling leads to more
flexible and testable systems.

A great place to employ interfaces is
in our layered architecture, at layer

vided by the deprecated code must now
call strangler code.

Use Careful Physical Design to
Control Dependencies

The careful layering we’ve designed can
easily be undermined by circular 
dependencies. Even though we’ve drawn a
picture—and have made a rule that a given
layer can only call the layer beneath it, never
the layer above it—Java won’t prevent
that rule from being broken. To address
this problem, physical design (how an appli-
cation’s code is laid out in the filesystem)
has to be considered.

Most projects use a single large tree
for all Java source in the application.
This is convenient because the source can
be compiled with one javac command.
However, this approach does not help to
enforce our layering rules. It is better to

Figure 1: A layered architecture. Layers are generally organized top to bottom—
most specific to most general.

Figure 2: A package dependency diagram. Use a dependency
diagram to analyze dependencies. Follow the arrows
to determine what must be compiled first.

the common
package

is accessible 
to all other code. 

Therefore, 
it must be 
compiled 

first.



34 BETTER SOFTWARE OCTOBER 2005 www.StickyMinds.com

boundaries. The layers expose only a set
of interfaces describing the services that
the layer provides. The client of the layer
knows only about the interface and
therefore is not coupled to any specific
implementation of that interface.

Here is a simple Java interface defining
a part of a “plan service.”

public interface PlanService {
void createPlan(Plan plan);
// ...

}

Note that the interface defines only the
operations and not the implementations
of those operations.

The production of this interface can
be implemented as follows:

Here, the plan is stored and an email
message is queued.

The EmailService and PlanDao 
are interfaces, which allow easy 
substitution of components. The 
PlanDao represents a component that
can persist a Plan object. There are
many Java persistence mechanisms. 
Because PlanServiceImpl does not de-
pend on any of them—only on the com-
mon PlanDao interface—you can pick a
new mechanism at any time, without
having to change client code like 
createPlan(). Likewise, the
EmailService interface describes any
component that can accept an email
message. For testing purposes, you can
easily substitute a “mock” implementation
of EmailService that doesn’t really send 
the email. That makes testing 
createPlan() much easier and faster.

on its host. To accomplish this, we insert
an architectural layer called the gateway.

The gateway provides access only to
those pieces of legacy functionality that
the strangler needs—and no more. By
not coupling directly to legacy classes,
the strangler application stays dependent
only upon legacy features—and not at all
on legacy implementations.

An example from our system: The
legacy system provides a way to send
form email to users of the system (for 
example, when a user’s password is
changed). When we strangled the password-
reset feature of the system, we weren’t ready
to rewrite the email functionality as well.
So, we built a gateway to the legacy 
system’s email functionality. The UserService
calls the EmailGateway, which in turn calls
the EmailMessage legacy code.

The production implementation of
the gateway talks to the legacy code,
whereas mock implementations are used
in unit testing. Someday, when we strangle
the legacy email code, the production
gateway implementation can be replaced
with code that talks to strangler code 
instead of legacy code. Alternatively, if the

Leverage URL Integration
It’s easy to forget that a great feature

of the Web is location transparency. We
take it for granted when browsing from
site to site. However, a “site” can easily
be composed of many bits of content
served up from diverse servers—and even
different domains. You can leverage this
transparency in your own application to
have legacy code interact with strangler
code (and vice versa) via URL integration.

Suppose you have a feature implemented
in legacy code and you wish to replace it
with strangler code. Rewrite the feature in
the strangler, and then ensure that all links
and redirects are aimed at the strangler.

This approach can be taken quite far.
For example, in our system we needed to
rewrite a piece of functionality that had a

“wizard” interface. Since we didn’t have
time to rewrite every page in the wizard,
we used URL integration to jump back
and forth between legacy and strangler
pages and controllers. (See Figure 3.) We
used session variables to track state 
between the two “sides” of the feature.
Due to the magic of the Web, the weaving
of new with old code was transparent to
the user.

Build a Legacy Gateway
So, we’re replacing legacy code with

strangler code. But in many cases the
strangler code is not complete—there are
times that it needs access to features that
haven’t yet been strangled. In these cases,
the strangler needs access to legacy code.
However, it would be a mistake to give
the strangler direct access; we don’t want
our strangler to become too dependent

public class PlanServiceImpl implements PlanService {
private EmailService emailService;
private PlanDao planDao;

public void createPlan(Plan plan) {

// ... perhaps manipulate the plan in some way ...

planDao.create(plan);
emailService.send(new PlanEstablishmentMessage(plan));

}

// ...
}

Figure 3: URL integration. The green
balls represent shared state.
Strangler controllers manage
shared state only through the
gateway. Local strangler state
can be managed directly (as
Controller 1 is doing, indicated
by the solid arrow from it to
the state).



www.StickyMinds.com OCTOBER 2005 BETTER SOFTWARE 35

gateway is called from only a few places,
those places can just be recoded to use
the strangler’s functionality directly.

The gateway presents a possible 
problem. If any legacy code can call the
strangler code directly, and the strangler
code can call the legacy code via the gate-
way, it’s easy to end up with a circularity.
(See Figure 4.) Packages at the heads of 

The circular dependency is now broken,
and we can compile in this order: first the
gateway interfaces, then the strangler
code, then the legacy code, then the 
gateway implementations.

Leverage Strangler Features 
from Legacy Code

According to our strangling directive,
we want to develop all new features in
strangler code. But sometimes a legacy
feature needs to be extended rather than
replaced, perhaps due to scheduling 
pressure or other outside forces. Extending
the legacy code directly in the legacy code
base has the undesirable side effects of
adding to the legacy code base and creating
future work to move the new functionality
to the strangler application.

In most cases all is not lost. Recall
that we allow legacy code to access 
strangler code. If we design our extensions
carefully, we can extend the legacy code
only enough to delegate to strangler code.

The techniques used to delegate to 
strangler code obviously vary by context. I’ll
give a couple of examples from our system.

Replace Legacy Implementation 
Probably the simplest way to leverage

strangler features from legacy code is to
“hollow out” a given legacy class, keeping
its external interface the same, and 
replacing the old implementation with 
delegation to a strangler implementation.

We have used this approach in a few
of our legacy “row gateway” classes.
These classes have an instance variable
for each column in the related database
table and have methods corresponding to
database operations (create, read, update,
delete). In a number of cases we have 
replaced the legacy instance variables
with a reference to a strangler domain
object and delegated the database operation
methods to strangler DAO code. This
ensures that the data and operations are
implemented in only one place—the strangler.

Introduce Delegating Subclass
Our application has an algorithm to

generate financial transactions. The 
algorithm operates on a list of 
“processing instructions.” These instructions
are subtyped into several flavors of 
instruction that the transaction generation

arrows must be compiled before those at the
tails. So which package gets compiled first?

The solution is the Separated Interface
pattern from Fowler’s Patterns of Enterprise
Architecture. It’s shown in Figure 5. The
strangler code depends on the gateway 
interface—not on the implementation.
The implementation depends both on the
legacy code and the gateway interface.

Figure 4: Circular dependencies. If you follow the
dotted-line arrows from one package to
another and find yourself back at the 
start, you have a circular dependency—
and a design problem.

Figure 5: Breaking circular dependencies with
Separated Interface.



algorithm calls polymorphically.
We recently had to introduce a new

type of instruction. The easiest thing
would have been to implement a new 
instruction subtype in the legacy code,
using the already existing instruction
framework. However, this would only 
increase our legacy code base. On the
other hand, we couldn’t possibly move
the entire transaction generation 
algorithm to the strangler application. 

We solved the dilemma by extending
the hierarchy of legacy processing 
instructions to include the new 
instruction subtype. However, the 
implementation of this new subtype 
didn’t call into legacy code the way all
the other subtypes did. Rather, this new
instruction subtype delegated to 
a new, minimal transaction generation
framework that we implemented in the
strangler code.

Over time we’ll be able to use 
Replace Legacy Implementation to
move legacy instruction types to use 
the strangler transaction generation
framework. Eventually, when the 
strangler handles the majority of the 
instruction subtypes, we’ll move the 
remainder of the transaction generation
feature to the strangler.

Some Lessons
While our strangling effort is moving

along well, it hasn’t all been easy. My
team has learned some lessons along the
way. Here are a couple worth relating:

Sometimes it’s better to bite off
more—rather than less—when strangling.
Sometimes trying to integrate small
pieces involves handling details that
could be ignored when integrating large
pieces. For example, while our URL 
integration approach worked out well in
the “wizard weaving” implementation,
once we were finished we felt as though
it might have been better to just replace the
whole wizard. Of course, this was hind-
sight, but it’s still worth keeping in mind.

Be ever vigilant in protecting your
values while working on the strangler
application. It’s trite—but old habits really
do die hard. We still wrestle occasionally
with short-term convenience versus
long-term maintainability and quality. {end}

Mike Thomas has worked in IT since
1986. He has been employed both as an
employee and as a consultant on a 
variety of computing platforms—from
mainframes to micros—for companies
varying in size from eleven to sixty
thousand employees. Since 1999 Mike
has concentrated on building enterprise
systems in Java. Mike maintains an 
extensive personal Web site at
http://www.samoht.com and can be
reached at mike_thomas@yahoo.com.

36 BETTER SOFTWARE OCTOBER 2005 www.StickyMinds.com

Processes 

Status Quo The Opposite
Little contact with stakeholders “High touch” environment where 

stakeholders are continuously involved
Lengthy iterations, up to six months Short, two-week iterations, 

based on SCRUM process
Manual builds Continuous and nightly builds
Little developer testing, no automated tests Lots of developer testing, tending 

toward test-driven development (TDD).
Many automated tests, 
both JUnit and FitNesse

Architecture and Design 

Status Quo The Opposite
UI and business rules mixed Layered architecture

Employ Model View Controller pattern
High coupling Code to interfaces

Layered architecture
Inversion of control

Overuse of singletons and session variables Use an inversion of control framework
to get access to collaborating classes (the Spring Framework, in our case) to 

resolve collaborators transparently
Unmanaged dependencies Layered architecture

Careful physical design
String and integer type codes Typesafe enumerations

Replace type code with inheritance
No developer tests Lots of developer tests (JUnit and 

FitNesse)

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware
! Strangling tools
! Metrics
! Information on dependencies,
inversion of control, and lightweight
containers

The Costanza Principle “Opposites”

Find out more about strangling legacy code. Log on to www.StickyMinds.com
to join Mike Thomas’s RoundTable discussion.


