This article is provided courtesy of STQE, the software testing and quality engineering magazine.
Tools & Automation

A graphical user interface
is not designed for automation.
Here's how to use a scripting
interface to test the software.

BY BRIAN MARICK

Bypassing
the

GRAPHICAL USER INTERFACES MAKE TEST AUTOMATION HARD. THE
problems are well known. You need specialized tools to drive
the GUI. Those tools can be confused by the common pro-
gramming practice of inventing custom user interface con-
trols. When they are used in the simplest way, the tools lead to
fragile tests that tend to break en masse when the GUI
changes. Making the tests resistant to change requires elabo-
rate and sometimes awkward testing frameworks.

Sometimes these frameworks are the only solution. Other times, there are alternatives.
This article is about one of them: testing through the program’s scripting interface. My
example will be testing Microsoft Word
through its COM (Component Object Model)

interface. That’s the interface that allows you QUICK LOOK

to write a Visual Basic or Perl program that = Testing using the Component

uses Word to generate form letters. Since auto- Object Model

mated tests are just programs, the same inter- = The Ruby scripting language

face is dandy for testing. = Combining exploration and
This approach can be used with interfaces automation

other than COM. For example, Web services

www.stgemagazine.com SEPTEMBER/OCTOBER 2002 STQE 41

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

are becoming popular. These applications can be accessed from
anywhere over the Internet, these days often using an interface
called SOAP. Tests of such an application would look quite like
what you’ll see in this article.

This article will give you four things:

1. A feel for what a scripting interface looks like.
2. An example of how to write tests against one.

3. Some exposure to the scripting language I think is best for
testers, Ruby. I assume no programming background.

4. An appreciation of the benefits of bypassing the GUL

The Application

In addition to exposing its workings through its GUI, Word
also exposes them through an object model. You may not ever
test Word, but understanding its object model will help you un-
derstand the object models of other programs.

The easiest way to describe an object model is to show it in
use. To do that, I'll use Ruby. Like many scripting languages,
Ruby is interpreted. That means it lets you type instructions
one at a time. As you type each one, Ruby performs it. This fea-
ture is enormously valuable. When I started this article, T knew
practically nothing about controlling Word programmatically.
Rather than writing a test, seeing the whole thing fail, trying to
figure out what had gone wrong, fixing the test, seeing it fail
again...I instead took baby steps, getting each step of the test to
work before moving on.

So let’s use Ruby to control Word. If you want to follow
along, the StickyNotes at the end of the article tell you how to
download Ruby.

Here are the first two instructions. What I type is in bold
font; what Ruby types is in normal font.

> require 'win32ole'

true

> Word = WIN320LE.new('Word.Application')
#<WIN320LE:0xa0ad 168>

The first line performs some behind-the-scenes magic that al-
lows Ruby to talk to applications like Word. The true merely
means that the magic worked. The second line starts Word and
creates an object, Word, with which to control it. You can read
that line as “Please, Mr. WIN32O0LE, create a new instance of
the Word application and stash the result in Word.” The
weird text in angle brackets is merely the printable representa-
tion of Word.

Now we can do things to Word. The first thing we can do is
to make it visible. By default, Word doesn’t open a window on
the screen when it’s started this way. To make it open a window,
we do this:

> Word.visible = true

What’s happening here? The object Word has a number of az-
tributes attached to it. The notation .attribute asks for the value
of an attribute, and the notation .attribute= sets the value.
When we make the visible attribute true, Word shows itself.

If we look at the Word window, we see no open docu-
ments—we’re not editing anything yet. We can “see” the same

42 STQE SEPTEMBER/OCTOBER 2002 www.stgemagazine.com

thing programmatically. One of Word’s attributes is docu-
ments: the list of open documents.

> Word.documents
#<WIN320LE:0xa020110>

That by itself is not very informative. It’s another weird object
that prints out with angle brackets. But that weird object itself
has attributes:

> Word.documents.count
0

Yes, indeed, we have no open documents. What we see here is
that an object model consists of a collection of objects that are
chained together. Word is connected to its documents. The
documents attribute will be connected to individual documents
(once we create them), and those individual documents will be
connected to all sorts of objects representing the text within the
document. Our tests will create those objects and navigate
among them, just as users do when they use the GUI. That is,
the GUI and the programmatic interface are both “skins” over
the same underlying “guts.” Since most of the bugs lie in the
guts, we can find them either through the GUI or via Ruby.
So let’s create a document:

> Word.documents.add
#<WIN320LE:0xa09cc80>
> Word.documents.count
1

This looks as if we’re asking for the add attribute of Word.
documents. Instead, we’re asking Word.documents to add a
new document. (This is often called “sending the object a mes-
sage,” “invoking an operation,” or “calling a function.”) If
you’ve programmed before, you might be used to languages
that require parentheses when calling a function—Word.docu-
ments.add()—but Ruby is happy for you to leave them off.

How do we know what attributes and operations are avail-
able? We can look in the documentation—no, don’t laugh! Re-
member, the scripting interface isn’t intended for us testers. It’s
designed to let end users write form letter generators—and
they’ll have to have documentation to do that.

Of course, that documentation might well come too late in
the project, in which case we testers will have to ask the pro-
grammers. That means we might build tests on a changing
scripting interface, but it almost certainly won’t change nearly
as much as the GUIL

(Not knowing any Word programmers, I used three
sources of information when working up this example. First, I
found the text of the Microsoft Office 97 Visual Basic Pro-
grammer’s Guide on the Web. It was easy to translate code
snippets into Ruby, even though I’ve never written a line of
Visual Basic. But that book doesn’t describe all of Word’s op-
erations and attributes. When I needed to do something the
book didn’t cover, I did that thing through the GUI while
recording a Word macro. Then I looked at the macro’s Visual
Basic code to find the operation name I needed. Finally, when
I needed an attribute name, I used a handy feature of
WIN32OLE: it lets you ask for the names of the object’s oper-
ations and attributes. It’s easy to guess what an attribute like
count must mean for documents.)

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

Let’s try one more thing before building the test. At any giv-
en moment, Word maintains a selection object that describes
where new text should go. (In the GUI, this is represented by ei-
ther the “I-beam” cursor or a stretch of highlighted text.) So we
can use that to type text into the new document:

> Word.selection.typetext('hello, world')
nil

The text magically appears in the new document. (The nil is
what Ruby says when it doesn’t have anything special to say.)

Building a Test

Now we’re ready to test. Let’s suppose we’re testing Word’s
Find and Replace feature. I'll actually write only one test, but
let’s set things up as if [were more ambitious.

Among programmers who are fond of testing, the “xUnit”
series of testing frameworks has become quite popular. The
“x” in “xUnit” stands for a particular programming lan-
guage: jUnit is for tests written in Java, cppUnit for tests writ-
ten in C++, and so forth. There are two Ruby xUnit frame-
works. I’'m using the one called Test::Unit. Figure 1 shows a
simple template for Word tests.

The require statements set up both Test::Unit and the Word
interface. The class definition groups some tests together. Each
def is a test for Test::Unit to run. It’s our job to fill in the blanks
with Ruby code that will find Word bugs. After the end of the
class, we see lines that start Word, add a document, run all the
tests, close the document (without saving), and exit Word.

Notice that I’'m setting things up so that multiple tests all
use the same document. That’s because programs like Word
often suffer from “creeping crud,” where something goes
wrong in Word’s internal state, the wrongness builds up for a
while, then reaches the point where it causes a crash. Al-
though it’s not my goal to find such bugs, I'll be happy if I do.
So I don’t restart Word between tests, nor do I use different
documents for each test.

However, I don’t want test interdependence, such as a
test that won’t work unless another test runs first. That’s a
maintenance nightmare. So I’ll want to make sure to clear
the document before each test. I can do that by adding the
following to the class:

def set_up
Word.selection.wholestory
Word.selection.delete

end

The first line selects the entire document (control-A in the
GUI), and the second deletes the selection. Test::Unit knows
to run set_up before each test.

Let’s suppose we want to write a test that checks whether
Word’s Find and Replace feature works in some boundary
cases: a match at the beginning of the document, at the be-
ginning of an internal line, at the end of an internal line, and
at the end of the document. So we’d like to work with a doc-
ument containing text like this:

MATCH at beginning of file

MATCH at beginning of interior line

at end of interior line, we find a MATCH
at end of file, we find a MATCH

44 STQE SEPTEMBER/OCTOBER 2002 www.stgemagazine.com

My strategy is to put that text into the document, then search
for “MATCH” four times. Each time, I'll check that the search
was successful and that the text matched was indeed the right
“MATCH.”

First, I’ll write the code that puts the text into the docu-
ment:

def test_find_boundaries
original =
'MATCH at beginning of file
MATCH at beginning of interior line
at end of interior line, we find a MATCH
at end of file, we find a MATCH'
Word.selection.typetext(original)

Unfortunately, the text is wrong. The second line doesn’t really
have a “MATCH?” at the beginning of the line. While the first
line has no spaces before the “MATCH” (because it’s just after
the opening apostrophe), the second, third, and fourth lines
have leading blanks between the left margin and the text. That’s
because I was tidy and lined everything up. I could indent those
lines to the left margin, but that would look ugly and make my
test less readable. Since readable tests are important, I add an-
other line:

def test_find_boundaries
original =
'MATCH at beginning of file
MATCH at beginning of interior line
at end of interior line, we find a MATCH
at end of file, we find a MATCH'
original = original.without_left_whitespace
Word.selection.typetext(original)

This illustrates the importance of using a language like Ruby.
Because it’s a full-featured programming language, you can ex-

require 'test/unit'
require 'test/unit/ui/console/testrunner'

require 'win3Zole'
class TestWord < Test::Unit::TestCase

def test_XXX
add test
end

def test_YYY
#add test
end
end

Word = WIN320LE.new "Word.Application'
Word.documents.add

Test::Unit::Ul::Console:: TestRunner.run(TestWord.suite)
Word.documents.close(false)

Word.quit

Figure 1: A simple template for Word tests

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

tend it to do things you need. (Or, if you’re not a hotshot pro-
grammer, have someone else extend it for you.) In this case, I
added a new operation to strings, one that removes leading
white space from each line. That required one line of code.
(You can find it, and other code not shown here, in the Sticky-
Notes at the end of the article.)

Typing text puts the cursor at the end of the document. I
need to go back to the beginning, where I'll start my search:

Word.selection.start=0
Word.selection.end=0

Setting the start position to 0 makes the selection begin before
the first character. (Position 1 is between the first and second
characters.) Setting the end position to 0 makes the selection
start and end at the same place, which turns the selection into
the I-beam cursor.

Now I tell Word what to search for and instruct it to execute
the search. (This is like typing the search string into the Find
and Replace popup and hitting OK.)

Word.selection.find.text="MATCH'
result = Word.selection.find.execute

Did the search succeed? (It should have.) I can discover that by
checking the result against an expected value.

assert_equal(true, result)

My test asserts that the result should be true. If it’s not,
Test::Unit will tell me of a test failure.

When Word finds something, it’s supposed to set the selec-
tion to the matched text. Here, I check whether the selection
starts and ends in the right place (the first five characters in the
file), and contains the right text:

assert_equal(0, Word.selection.start)
assert_equal(b, Word.selection.end)
assert_equal('MATCH', Word.selection.text)

I could repeat the same search three more times, first calculat-
ing the expected start and end positions for each match. But
that kind of mindless repetitive behavior is what computers
are for, not testers. So I’ll make Ruby do it for me.

There is already a Ruby string operation, index, that re-
turns the position of a match within a string. Using it, I quick-
ly write an indices operation, which returns a list of positions
of multiple matches. After writing it, I try it out in the inter-
preter.

> original.indices('MATCH')
[0, 27,98, 130]

Now I can easily finish my test because the end of the match is
always five past the start. In Figure 2, I’ve marked the changes
in bold. The Ruby code indented under the for is executed
four times, one for each number in the list. The first time,
start has the value 0, the second time 27, and so on.

That’s pretty much it. (Word passes the test, by the way.) I
could continue testing Word’s searching for a long time. If I did,
I’d have to learn more details of its object model. (Pve only
written two programs to drive Word, both of them quite sim-

ple, so you now know almost as much as I do.) But I'm confi-
dent that there would be no great stumbling blocks in the way.

Where Do We Stand?

How does this approach let us do our job better?

1. A GUI is not designed for automation. A GUI control that
can’t be automated is an inconvenience to testers, but not
users. So fixing the problem is low priority.

In contrast, a scripting interface is designed to let users au-
tomate. A scriptable object that doesn’t script is entirely
pointless. Here, the interests of users and testers are aligned,
so the problem is much more likely to be fixed.

As a consequence, when we bypass the GUI, we’re much
less likely to find ourselves unable to finish automating.

2. The scripting interface is much more stable than the GUI. If
some designer renamed a menu item, users would sigh and
cope. If someone changed selection.start to selection.begin,
the users would scream bloody murder as all their scripts
broke. So that someone won’t do it. We’ll spend less time fixing
broken tests, more time writing new ones.

3. We’ve written tests in a standard scripting language rather
than what Bret Pettichord calls “vendorscript” (the custom
languages built into most GUI testing tools). Standard lan-
guages tend to be more mature than vendorscript, simply be-
cause their user base is larger. And you can use them to auto-
mate some of your other tasks, so learning them improves
tester efficiency in many ways. Finally, using standard lan-
guages makes it easier to get help, cooperation, and participa-
tion from programmers.

4. Because GUI test tools seldom provide free runtime licenses,
it is costly for programmers to run the tests. Since scripting lan-

def test_find_boundaries
original =
'MATCH at beginning of file
MATCH at beginning of interior line
at end of interior line, we find a MATCH
at end of file, we find a MATCH'
original = original.without_left_whitespace

Word.selection.typetext(original)
Word.selection.start=0
Word.selection.end=0

Word.selection.find.text='MATCH'

for start in original.indices('MATCH')
result = Word.selection.find.execute
assert_equal(true, result)
assert_equal(start, Word.selection.start)
assert_equal(start+5, Word.selection.end)
assert_equal('MATCH', Word.selection.text)

end

end

Figure 2: A completed test

www.stgemagazine.com SEPTEMBER/OCTOBER 2002 STQE 45

http://www.stqemagazine.com/

-

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

guages are free, that barrier goes away. Programmers can find
their own bugs, faster.

5. Testers will be early heavy users of the scripting interface. As
such, they may spot omissions, inconsistencies, and awkward-
ness before the users are subjected to them.

Of course, none of these advantages materialize if there isn’t a
scripting interface. Fortunately, they’re becoming more and
more popular as software publishers realize that users will get
value from scripting almost any product.

What about the GUI?

I believe any well-run project will include exploratory as well as
automated testing. Using a product is a different experience
than programming it, and that experience activates different
sites of creativity in the skilled brain.

Consequently, you should have people banging away at the
GUI to find bugs, usability problems, and missing features.
They’ll find them in both the GUI and the guts of the pro-
gram, whereas the scripted tests will find them only in the
guts. Do the manual testers need to be backed up by automat-

ed GUI tests in order to find even more bugs? Or does the ex-
ploratory testing give enough coverage of the GUI?

Were I a project manager, I’d want to be sure exploratory
testing gave adequate coverage. Suppose we’re finding that
code changes often cause GUI bugs that aren’t being found by
exploratory testing. My first reaction wouldn’t be to add re-
gression tests for the GUI. It would be to wonder if we
weren’t skimping on exploratory testing. If our exploration is
missing the GUI bugs, might it not also be missing usability
problems and omitted features?

My next reaction would be to ask, “Why is the GUI code
so complicated that it’s a source of bugs?” Consider Word’s
Find and Replace dialog. As far as I can tell, it doesn’t do
much. It collects some values, stuffs them in a Find object,
and calls execute when the user presses OK. How much can
go wrong? Oh, the programmer might accidentally wire up
the OK button to the Cancel action, but how likely is that to
escape programmer manual testing and later independent ex-
ploratory testing?

Word’s Find and Replace dialog appears to be an example
of what’s often called a “thin GUI,” one that does little pro-
cessing and is cleanly separated from the guts of the program

A Lesson in Automation

Ten years ago, Bret Pettichord wasn't the founder of Pettichord Consulting,
he was part of a software development and test team working on the In-
terleaf desktop publishing software. One of the team’s goals was to find an
automated way to test the graphical user interface. “We tried using an
analog capture replay facility we had developed in-house. We abandoned
it. It had all the traditional problems: synchronization, reliability, readabili-
ty. It would generate these big scripts, and you couldn't tell what went
wrong.” Still, the team knew they wanted to find some way to automate
their efforts. Meanwhile, an Application Programming Interface (API) for
product customization had been developed internally, using the LISP lan-
guage. “We had to test the APl anyway, so we thought, ‘Maybe we can
use this."” It was a good idea that never quite made it, and Pettichord
thinks he knows why.

The majority of the problems came from the focus of the automation
efforts. The team spent most of their time on the framework, trying to
make the automated tests replicate interactive testing. When testing inter-
actively, says Pettichord, “testers routinely make decisions on the fly.
Testers focus more on one area and less on another because of the prob-
lems found in other tests. We were trying to make our automated tests
replicate that mindset—true to the way people thought.” The dependen-

cies and relationships, while not all that technically difficult to support,

46 STQE SEPTEMBER/OCTOBER 2002 www.stgemagazine.com

were hard to explain and diagram. “Trying to create this artificial intelli-
gence focused us an making these really small tests of low-level events be-
cause it was easier to show the relationships.”

If Pettichord had to do it over again, he says, “First, | would take the ac-
tual bugs we'd found manually and see if | could find them through the
API. It would make me feel good. Tests that find bugs are good tests. It
would also tell me, ‘To what degree does the API parallel the GUI?" It's
quite possible that what we did in the APl would pass, while failing in the
GUI. We needed to find out, 'Is this going to work?"”

Second, the team had been testing the product interactively, manually,
for ten years. Old habits are hard to change. “We had thirty-some testers
on this project. The majority didn't have programming skills, so we were
very concerned with how to get people to switch gears and write in LISP."
Pettichord wishes that they had focused on getting those nonprogrammers
up to speed, so more testers could have been involved: “We tried to sugar-
coat it. We were trying to make it appear easy. We should have spent more
time training them on the subset of LISP that they needed to understand.”

Pettichord concludes, “Automated testing is different from manual
testing. You can't try to replicate manual tests. You have to change the
rules and the expectations. You have to get tests running. We were selling

the vision—we should have been selling the results.” —R.T.

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

(see Figure 3). Such GUIs are inherently more testable, and
many believe they make for better overall designs. For exam-
ple, when your company suddenly realizes that their applica-
tion could be a Web service as well as a desktop application,
that enhancement is much easier if the GUI code isn’t all inter-
twined with the rest of the code.

So I consider the need for GUI regression testing likely a
sign of weakness somewhere else in the process, at least given
the state of the art of GUI construction technology and GUI
testing tools.

What Could Go Wrong?
All this is not to say that testing through the scripting interface
is without risks. Here are some that worry me.

= What if the GUI and the scripting interface expose different
features? For example, suppose Word’s scripting interface pro-
vided no way to do what the Find and Replace dialog does.
The exploratory manual testers may not know that the au-
tomators are not testing searching. They wouldn’t then know
to lavish extra attention on it. As a result, searching would be
undertested.

= It’s also possible that searching is available through both in-
terfaces, but is implemented by different code. Then testing
scriptable searching wouldn’t tell you anything about whether
searching with the Find and Replace dialog works.

= Writing tests in a scripting language isn’t that hard a pro-
gramming task, but it’s certainly harder than not program-
ming at all. Moreover, some testers have a phobia of program-
ming. They’ve been misled into thinking all programming is
hard, so, for them, all programming is hard.

The Stirring Conclusion
Once upon a time, when the world was young, giants walked
the earth, and my hair was way down my back...we test-

ers spent less time
wrestling with inhos-
pitable and change-
able interfaces. We
spent more time test-
ing, less time main-
taining.

The graphical user
interface sent us on a
long detour. Now
that we realize the fu-
ture is not in mono-
lithic, mostly isolated
products, but rather
in ones that talk to
both people and oth-
er programs, we can
get back on track.
What’s good for a
flexible, intercon-
nected, networked
world is good for
testers. All that’s re-
quired is that we
move our hand from the mouse back to the keyboard and
start typing scripts. STQE

Scripting

GuI Interface

Program Guts

of the guts of the program.

Brian Marick has worked in testing since 1981. He is the au-
thor of The Craft of Software Testing, and is a technical editor
for STQE magazine. Contact Brian at marick@testing.com.
Read other writings at www.testing.com.

STQE magazine is produced by STQE Publishing,
a division of Software Quality Engineering.

www.stgemagazine.com SEPTEMBER/OCTOBER 2002 STQE 47

Figure 3: The thin GUI and the scripting

interface are both shallow layers on top

ANNIE BISSETT

http://www.stqemagazine.com/

