
Page 1

TABLE OF CONTENTS

Introduction.. 3

Test Design...16

Using a catalog.. 17

Bugs in boolean expressions....................................22

Bugs in relational operators......................................31

How testing fits in to design and coding................... 37

Test implementation.. 41

Should this test be automated?................................ 42

Test suite maintenance.. 52

Test Design Reference...63

Tips for increasing bug-finding power.......................64

Faults of omission.. 82

Bugs in method call results...................................... 86

Bugs due to unused variables.................................. 98

Test Implementation Tips.. 104

Catalog.. last page, or
www.testing.com/writings/short-catalog.pdf

1

Testing for Programmers

Brian Marick
marick@testing.com

www.testing.com

Copyright © 02000 by Brian Marick. All Rights Reserved.
Some images copyright www.arttoday.com.

Page 2

2

Permissions

• You may give this document to
other people

• You must give the whole thing,
without changes or additions,
unless I give you prior permission

• You may not present it unless I
give you prior permission

I present this material in a half-day to full-day tutorial format, but I believe
these notes are suitable for self-study. So anyone may pass them on,
verbatim, to anyone else.

If you’re looking at a paper copy, you can find an electronic one at
<http://www.testing.com/writings/half-day-programmer.pdf>.

Some of these pages refer to a “catalog”. That can be found at
<http://www.testing.com/writings/short-catalog.pdf>.

Page 3

3

Introductions (1)

• Who am I?

• The rise and fall and rise of

programmer testing

ca. ‘94 today

All tutorials are infected by the presenter’s experience and point of view.

What’s my experience? I graduated in 1981 from the University of Illinois.
I went to work for a startup. They didn’t know much about me, so they put
me in testing, where “you can’t do as much damage if you’re no good”. I
was fairly good at testing. After a time, the project needed more
programmers, so I moved into programming, where I spent the next
seven or so years, concentrating on compiler-like things.

Importantly, I believe I was seen as a better programmer than my natural
gifts would justify. That’s because I tested. I made lots of bugs, but they
were caught before my fellow programmers could see and be hurt by
them.

I went back into testing, then went independent as a testing consultant in
1992. I specialized in teaching developers how to test. For a while,
programmer testing was somewhat faddish. The reason, I think, was a
common belief that the Deming-style quality efforts the Japanese had
popularized for cars needed to be applied to software. Instead of
“scrapping and reworking” software toward the end of the “production
line”, problems should be found as soon as possible.

That programmer testing movement (if I can call it that) faded away. Now,
thanks to books like Refactoring (Fowler) and Extreme Programming
Explained (Beck), it’s back. I hope it sticks this time.

Am I a battle-scarred veteran with wisdom to impart? Or am I like many
consultants, who think all that’s new is just a recapitulation of their glory
days? Am I a lumbering dinosaur with little to tell today’s generation of
nimble mammals? We’ll see!

Page 4

4

Why Do I Test?

• I look smarter than I am
• It saves me time
• Courage to grow the system
• Flow

If you desire these things, test

If testing isn’t doing these things,
change the way you test

These days I’m programming more. In fact, I love to program, much more
than I like to test. In many ways, I’m a typical compulsive programmer. So
why do I test?

As I mentioned, it makes me look smarter. That’s a pretty crass reason,
so I have others.

Today, most of my programming does not make me money. I don’t have
a lot of time. I need to get a lot done quickly. Testing makes me faster
because I find bugs quicker, while they’re easier to fix. But I’m only faster
because the time I save through testing exceeds the time I spend doing
testing. More on that later.

When I was a full-time programmer, I used to work on big systems. I used
to be scared to change them. Who knew when a small change over here
would break something way over there. A good set of tests gives me the
courage to change the system. I’m more likely to take the risk of making it
better. Testing helps keep systems useful and nimble.

Finally, when I’m programming, I want to program. I don’t want to keep
getting distracted, jumping out of the programming flow into fixing
mistakes and figuring out what it is that I really want to do. Testing helps
me with that - I’ll explain more later.

To my mind, any testing regime that doesn’t help me attain these goals
should be replaced with one that does. What I describe in this tutorial
works for me. It would probably also work reasonably well for you.

(For information about “flow”, see Flow: The Psychology of Optimal
Experience, by Mihaly Csikszentmihalyi.)

Page 5

5

Introductions (2):
Who Are You?

• Reading knowledge of Java?
• Used Beck/Gamma *Unit?
• Experience with testing?

– “I test by trying the program out”
– occasional or semi-systematic testing
– “I test consistently”
– “I am Kent Beck, Martin Fowler, or Ron

Jeffries”

• Reading knowledge of XP?

(XP is the common abbreviation for Extreme Programming.)

Page 6

6

Logistics

• What you have
–notes, including reference
–catalog

• What we’ll do
–talk, listen, and discuss
–take breaks

You have these slides and a one page catalog to use in testing. It’s the
last page in this handout.

I wish there were labs in this tutorial, but time doesn’t allow.

Labs have value for teaching, of course, but they’re especially nice
because they break up the pace and keep people alert.

To break up the tedium, I’ll pause for class discussion. Please feel free to
talk throughout the half-day.

Page 7

7

Let’s Start With an Example

At this point in the tutorial, I switch to a different slide show. It shows how
I used developer testing in some code I was working on. I’ve written that
story up separately. You can find it here:
<http://www.testingcraft.com/trace-testing/test-then-code.html>

Page 8

8

Let’s Design Some Tests
(Background)

• Evaluate boolean expressions
• Exprs

• BindingSets
{ a=true, b=false, c=true }

&&

a ||

b

c

!

Let’s think about some tests for some code I wrote recently. It’s pretty
mundane code.

There are trees, Exprs, that represent boolean expressions. They can
contain terminals, && for the AND operator, || for the OR operator, and !
for the NOT operator.

BindingSets represent bindings (or assignments) of boolean values to
terminals.

Page 9

9

Let’s Design Some Tests

class BindingSet {
…
Boolean eval(Expr expr) {…}
…

}

eval() does a short-circuiting evaluation

Class BindingSet has a particular method, called eval. It is given a
boolean expression to evaluate. Suppose it’s given the Expr form of this
string:

a && (b || !c)

Suppose the BindingSet contains these bindings:

{ a = true, b = false, c = true }

The result should be Boolean.FALSE.

The above is a description of a test case. It first describes some inputs. I
use the term “input” to refer to any datum that could affect the
computation. In the example, the inputs are both the argument to eval()
and also the state of the BindingSet instance.

A test case also describes an expected result. If the actual result from the
method matches the expected result, the method passes the test.
Otherwise, it fails.

One other thing about eval(): it follows the usual short-circuiting
evaluation used in programming languages. That is, if the expression is
A&&B and A is false, B is not evaluated.

Page 10

10

Test, Then Code

new featurenew featurenew featurenew feature

design tests /
design interface /

plan implementation

missing cases and stupid ideas

tests

code

Notice what we just did. We designed some tests before looking at the
code. We might have even been designing the tests before the code was
written. In fact, that’s the right order: Test, then code.

To be more explicit:

First, you’re given one or more features to implement. To do that, you
need to decide on interfaces and behaviors for your code. You also do
some amount of thinking about what the code will look like.

As you think about interfaces and behavior, you document that thinking in
the form of tests for those interfaces. For example, you might have a set
of tests for any significant class that you write.

Then you write the code. The code is not done until it passes the tests.
Until it does, you keep working. You don’t start on any new features.

Now, unless you’re superhuman, the process of writing code will reveal
things you overlooked. Some of your ideas about behavior or interfaces
will now look dumb. That’s OK. You go back and change your design.
You may even change the definition of the problem you’re trying to solve
(the feature you’re trying to implement).

Importantly, the discoveries you make during coding lead to new tests. If
you notice you need a new behavior, you first add a test that checks
whether that behavior is implemented correctly.

Page 11

11

Testing Early: Saves Time,
Smoother Flow

new featurenew featurenew featurenew feature

design tests /
design interface /

plan implementation

missing cases and stupid ideas

tests

code

Why is it so important to write the tests before the code?

• One reason has already been mentioned: finding mistakes before
coding promotes the very efficient flow experience during coding. You
don’t spend so much time jarringly bouncing back and forth between
“what should this do?” and “how should it do it?”

• Writing tests first prevents bugs. You know specifically what the code
has to do, including some things you otherwise wouldn’t have thought of.
Unsurprisingly, when you code you mostly get those things right. If you
write the tests after the code, you’ll find you got more things wrong.

Page 12

12

An Implemented Test

public void testDemo() {
BindingSet env = new BindingSet();
env.set(“a”, Boolean.TRUE); // Note B is not set.

Expr expr = Parser.parse("a || b");
assert(Boolean.TRUE == env.eval(expr));

}

Here is what an implemented test looks like. I’m using Beck and
Gamma’s jUnit test framework, which you can find at
<http://www.junit.org>.

This test checks that short-circuiting is handled correctly. That is, “A||B”
should have the value TRUE when A is TRUE, even when B has no
value.

It first creates a binding set and puts a=TRUE into it. It then creates an
Expr from the string “a||b”.

Then the test asserts that eval(), applied to the expression, is identically
TRUE. Assert() is a method provided by jUnit. It records an error if its
boolean argument is FALSE and proceeds to the next test.

Note: You know how people argue about where to place curly braces in
code or about whether instance variables should begin with “_”? Test
drivers provoke the same passion about issues like how many asserts
should be in a test method, how much setup should be inside the test
method vs. in a separate setup method, and what the test hierarchy
should look like.

Those decisions have to be made. However, I don’t think it’s critical how
you make them, so I won’t discuss them in this tutorial. I have too much
material already. You’re welcome to add them to the Hot Topics list.

Page 13

13

The Result

test often

This page shows you what you want to see: all the tests have passed.

(You may notice that I have only 50 tests. I actually have many times that
number of asserts, since I tend to put multiple asserts per test.
Specifically, I have 376 asserts in my test suite.)

I’ve circled something quite important: all my tests for a chunk of code
that today is 1681 lines run in less than a second. Because they run so
fast, I’m encouraged to run them often. I make a change, run a test, make
a change, run a test. I’m never in doubt about where my program stands.

This quick cycling between coding and testing is essential. With it, you
find bugs immediately. Fixing them is usually simple and doesn’t disrupt
the flow of what you’re doing. Quick cycling is what makes programmers
true believers in testing.

Note: that’s it for this course on the mechanics of using a test automation
tool. They - and especially jUnit - are easy to use, and I refer you to their
tutorials.

A side note on my test suite: I actually have 2309 lines of test code right
now, even more than product code. That’s misleading. I spent much less
time on test code than on product code. There’s much more cutting and
pasting, more boilerplate code.

Page 14

14

(What
I

Really
Do)

Actually, I don’t usually use the GUI. I run the command-line interface
through an Emacs shell window, as shown in the slide.

Maybe I am a dinosaur: Emacs is still my favorite programmer’s editor.
Plus, using the command line saves me 0.041 seconds per run…

Page 15

15

Key Points of the Tutorial

• Test, then code
• Run tests continuously during coding
• Testing is an unremarkable part of

your life as a programmer
• Test design is about systematically

learning from past mistakes
• Test implementation is about reducing

the cost of tests
• You are probably too attached to your

tests

Having gotten the basics out of the way, let me summarize where we’ll be
going. I would like to begin to convince you of the following points:

• You should create a test before you write the code it is to test.

• You should run tests continually during coding. I am completely
unsurprised when I find myself running my test suite many times an hour.

• Testing is not a separate activity from programming. It’s as much a part
of programming as compiling, browsing code, or any of the other things
that are part of the process of getting correct program text into the
machine.

Those points have, I hope, been covered already. Some others are
coming up:

• When you design tests, you’re only incidentally focusing on
demonstrating that the code works. Oh, you want to show that, all right,
but that’s an easy consequence of trying to show that the code is wrong.
You’re looking to see if you’ve made certain likely mistakes. You know
they’re likely because you’ve made them before.

• If test design is about picking test inputs that have power at finding
mistakes, test implementation is about running those inputs as cheaply as
possible. The more bang for the buck, the more likely you are to continue
testing.

• Most programmers are too attached to their tests. They automate too
many of them. They keep them running after they’ve outlived their
usefulness.

Page 16

16

Outline

½Test design
–three techniques
–tips for increasing bug-finding power
–two more techniques

• Test implementation
–should this test be automated?
–test suite maintenance
–test implementation tips

There are two broad topics. The first is test design. What is it that makes
a good test? How much testing should you do?

I’ll cover three test design techniques in the presentation. I’ll leave two
others for reference. I also have a variety of tips for improving the bug-
finding power of tests. I’ll leave those for reference as well. (There’s not
enough time in half a day to cover everything.)

The second topic is implementation. What should tests look like? How
should they change over time? How can they be made less expensive?

(Cost, in this context, is mainly time. Other costs, like tools, are in the
noise.)

Again, some of the material is reference, for later reading. We will cover
the important topic of test suite maintenance. We’ll at least touch on how
you decide whether a test is worth automating, and we might cover it in
depth. We’re unlikely to cover the test implementation tips - those are well
suited for later reference.

Page 17

17

You Already Know a Lot About
Test Design

• All kinds of input that must be
handled differently
–each type of boolean expression
–recursive data structures
–unbound but unneeded variables

• Odd and incorrect inputs that
should be handled
–null pointers?
–circular structures?

Let’s get started with test design.

I hope that the eval() example has demonstrated that the collective
experience of the audience will come up with a good set of tests. (Though
it is likely that not everyone will arrive at all the test cases - perhaps only
a few people will.)

I expect we’ll have tests that exercise the different kinds of trees (ones
rooted with &&, ones rooted with ||, and ones rooted with !). We’ll
probably have trees that are deeper than one level (forcing recursion).
We’ll have tests of short-circuiting and probably tests for what happens
when the expression can’t be evaluated.

I bet we’ll also have tests checking what happens when eval() is handed a
null pointer instead of an Expr. Probably someone will have suggested a
test that checks what happens when the tree isn’t a tree at all, but rather
some circular structure. I’ll choose not to write that test - if someone
passes in a circular structure, the results are undefined.

Page 18

18

We Could Write It Down…

• People are not very imaginative about
committing bugs
–they tend to be the same bugs as before

• Test design is (mostly) about
triggering historically plausible bugs
–this also checks that the code does

everything that was intended.

Pay attention to your own catalog

technique 1

Where did those test ideas come from? I claim they are primarily - though
perhaps subconsciously - based on the memory of error. We’ve all
made mistakes.

• Programs do a case analysis - dividing the space of inputs into
subspaces, each of which is handled differently. (That’s what IF
statements, SWITCH statements, and inheritance do.) We’ve all had the
experience of mishandling one of the cases, so we’re inclined to check all
of them.

• We’ve been surprised by getting a null pointer instead of an object, so
we’re inclined to see if this piece of code blows up in the way others have
in the past.

And so on. People make new and innovative mistakes much less often
than they repeat the same old typos, thinkos, and other mistakes.
Therefore, testing - especially programmer testing - can get a lot of
mileage by checking for those common mistakes.

Programming is a pack-rat activity. You need to know lots of different
small things to succeed: different idioms, patterns, tricks of the trade, and
so forth. Good programmers are always on the lookout for those things,
adding them to their toolbox.

Another compartment in that toolbox should be a catalog of good failure-
provoking ideas for tests. When you fix a bug that your tests missed, ask
what kind of inputs would have uncovered it. Can you try those inputs in
similar situations?

A brief example of such a catalog is given as the last page of this
handout. It’s based on a much longer catalog that can be found in my
book The Craft of Software Testing and on my web site at
http://www.testing.com/writings/catalog.pdf.

Page 19

19

Class Discussion:
Applying the Catalog

Page 20

20

Need Every Test Idea Be
Implemented?

• ABSOLUTELY NOT!
va

lu
e

ignoring thinking testing

The catalog provides what I’m going to call “test ideas”. They’re just
ideas, not commandments from on high. Sometimes they’re obviously
inapplicable. Sometimes they’re applicable, but you don’t think they’re
worth testing.

Suppose you were writing OS disk drivers in 1990. You might have
looked at the catalog’s “one more than maximum size” entry and asked
yourself “so what if disks exceed two gig in size?” You couldn’t test that -
there weren’t any such disks (at least, I never had one). But you could
think about how your code would have to be changed if that day ever
came. The code would be better for it.

This especially applies to error handling code. Some errors are extremely
difficult to cause. (How do you make that memory allocation on line 345
fail?)

I think it’s always the case that thinking+testing has more value than just
thinking. No matter how hard you think, it’s easy to believe that the code
does what you want, not what it does.

But sometimes testing’s incremental value is huge (as in the triangles on
the slide), and sometimes it’s small. Implement tests when they provide
value. (We’ll see more about that later.)

Let me emphasize this: the mere act of thinking of a test idea will
sometimes lead you to smack your forehead and say, “Of course!” That’s
great return on investment.

Page 21

21

Why We’re Covering What
We’re Covering

“… trying to write too many tests usually
leads to not writing enough. I’ve often read
books on testing, and my reaction has been to
shy away from the mountain of stuff I have to
do to test… You get many benefits from
testing even if you only do a little testing….”

-- Fowler, Refactoring (1999)

The quote from Fowler is quite important. It’s shaped the way I’ve
designed this tutorial.

I’ve condensed my catalog down to one page because that’s handy
enough that people will actually use it. It contains the essential
categories.

The catalog is simple to use. The next two techniques are also simple -
maybe even simplistic. It seems like you should expect more.

If you’re new to testing, I’d like you to just start with these first three
techniques as described. As you start to see benefits from testing, add
the techniques and enhancements given in the reference sections.

Page 22

The next two techniques give the background you’ll need to use a
program that provides more test ideas. It gives you test ideas that find
certain kinds of historically likely bugs.

People often make mistakes writing boolean expressions. In this case,
someone wrote an || when she should have written an &&.

In this code, the result is bad. Instead of detonating a bomb when the
public is clear and the bomb technician is clear, it detonates it when either
of those two things is true. Pity the poor bomb technician who shoos the
public away and sets to work…

22

A Program for Finding Faults in
Boolean Expressions

…
if (publicClear || techClear) {

bomb.detonate();
}
…

should be &&

technique 2

Page 23

23

Finding the Bug?

• Test1: push button with the public
clear and the technician clear

• Test2: push button with technician
at bomb and 3 kibitzers hanging
over her shoulders

truetruetruetrue

P&&TP||Ttechpublic

FALSEFALSEFALSEFALSE

P&&TP||Ttechpublic

So, the question is: what test would find the bug? Let me go through this
laboriously.

If (in test 1) you wrote a test that checked what happens when both the
public and the technician are clear, you’d find that the code does the
correct thing (blows up the bomb). That’s because the code as written
evaluates to the same value as the code that should have been written.
So the program takes the right path for the wrong reason: no failure.

For the same reason, the program behaves correctly when both the
technician and the public are next to the bomb: the bomb is not
detonated.

Page 24

24

Finding the Bug

• Test3: push button with the public
clear but the technician still working

FALSEtrueFALSEtrue

P&&TP||Ttechpublic

To find the bug, you have to have a case in which the code as written
evaluates differently than the code that should have been written. Test 3
shows such a case.

Page 25

25

In What Ways Might A Boolean
Expression By Wrong?

A||B&&C

Any given boolean expression may be wrong in a number of ways. The
slide shows A||B&&C. In class, we’ll develop a set of likely faults. Those
are the boolean expressions that perhaps should have been written
instead of the expression that was written.

Here are the ones the program will worry about:

• Perhaps the expression-as-written was misparenthesized.

• Perhaps an || should have been an &&, or vice-versa.

• Perhaps a ! was omitted, or should have been added.

• Perhaps the expression was made too complicated, has too many
terms. These kinds of faults aren’t all that likely, but cost little to check for.

These do not exhaust the likely faults. For example, perhaps the
expression should have been:

a||b&&c&&d

The technique we’re talking about in these slides won’t necessarily find
that fault. It also won’t necessarily find a fault where the wrong variable
was used:

a||d&&c

That’s OK. No one expects perfection, I hope.

A||CA||BB&&CA

A||B&&!CA||!B&&CA||B||C

A||!(B&&C)!A||B&&CA&&B&&C(A||B)&&C

Page 26

26

Use This Program

Type in an expression.
‘q’ to quit.
> a || b && c
Test ideas for (a || (b && c)):

a b c
-------- --------- ---------

true true FALSE
FALSE true true
FALSE FALSE true
FALSE true FALSE

Replace with screen shot when GUI written

The program finds a small set of inputs (test ideas) that find likely faults in
boolean expressions. As I write (December, 2000), its GUI isn’t quite
done. When it is, it will be up on my web page as both an applet and a
download. (See http://www.testing.com/tools.html). Contact me if you
want the command line version (marick@testing.com).

The example on the slide shows the four test cases that suffice to
distinguish the expression as given from all the hypothetically more-
correct ones on the previous page.

Note that there are only 4 cases, instead of the 23 possibilities. I haven’t
proved that the program produces minimal sets, but I suspect it does.

This code has been checked on all 2,752,512 expressions that have five
or fewer binary boolean operators (ands and ors). For example, this:

!(!g316559 || !(g329998 || !(!(!g330426 || !(!g330486 || !g330520)) ||
!g330562)))

I’m pretty sure it gives the right answers for those expressions.

Page 27

Relatively few boolean expressions in programs are even as complicated
as the one on the previous page. Rather than always running to a
program for the answer, there are a few cases worth memorizing.

When the expression contains all &&s and no ||s, there are N+1 cases.
The first is the case where all the boolean terms are TRUE, and the
whole expression evaluates TRUE.

The remaining cases are each one where exactly one of the terms is
FALSE, so the whole expression is FALSE.

A&&B is the simplest example of such an expression. Its three required
tests are given on the right.

27

Cases to Memorize:
A1 && A2 && ... && An

• N+1 cases:
–all conditions true
–A1 FALSE, all others true
–A2 FALSE, all others true
– ...
–An FALSE, all others true

FALSEtrue

trueFALSE

truetrue

BA

A&&B

reference

Page 28

28

Short-Circuiting

FALSEtrue

true????FALSE

truetrue

t.hasNext()t!=null

t!=null && t.hasNext()

reference

In C, Java, C++, and similar languages, when the first term of an &&
evaluates FALSE, the second term is not evaluated. Why, then, should
you make that second term be TRUE?

Even worse, it may be that the second term cannot be made TRUE when
the first is FALSE. (The slide gives an example.)

Well, if you can’t make it TRUE, you shouldn’t.

But if you can, you should. The reason is that making a particular term
TRUE isn’t the point. The point is to distinguish the expression as written
from the expression that should have been written. There are some
variants of x&&y that the bindings (x=false, y=false) will not detect but
(x=false, y=true) will.

That is, if x&&y is correct, it doesn’t matter what value you choose for y,
given x=false. But if we knew for sure it was correct, we wouldn’t be
testing in the first place. If it’s incorrect, the choice might matter.

Page 29

As you might expect, an expression with all ||s has a solution quite similar
to one with all &&s.

You want the single expression that evaluates to FALSE (because all
terms are FALSE).

You want each of the expressions that evaluates to TRUE because
exactly one of the terms is TRUE.

29

Cases to Memorize:
A1 || A2 || ... || An

• N+1 cases:
–all conditions FALSE
–A1 true, all others FALSE
–A2 true, all others FALSE
– ...
–An true, all others FALSE

trueFALSE

FALSEtrue

FALSEFALSE

BA

A||B

reference

Page 30

30

Cases to Memorize:
A

• Two cases:
–A true
–A FALSE

…
if (!publicNearby) {

siren.set(siren.ON);
}
…

reference

And, whenever you have a boolean value by itself, try both cases.

The slide shows the kind of bug you might find. The “!” is incorrect.

The kind of bug this rule catches is the one where the boolean expression
is the negation of what it should be. Either of the cases catches this bug.
Why, then, should you try both?

The reason is that the slide contains two bugs. In the IF statement, the
siren is turned on, but never turned off. It should be.

This is a fairly common bug: one where the code just plain never works.
In C, the canonical example of such a bug is this:

fprintf(“Error %d”, code)

The first argument has been omitted, so a string is treated as a
destination stream.

Trying both values ensures that all lines of code in the program are
executed, which triggers all such bugs. (Exception: this doesn’t force
catch blocks to be exercised - we’ll talk about those later.)

Page 31

31

Finding Faults in Relational
Expressions

…
if (finished < required) {

siren.sound();
}
…

should be <=

technique 3

Let’s briefly move on to a related fault that the program helps with.

It’s common for programmers to misuse relational operators. In this
example, the programmer typed “<“ when “<=“ would have been correct.

(Thankfully, iterators have made such faults much less common, but “off
by one” errors have hardly disappeared.)

Page 32

32

Finding the Bug

truetrue1000

FALSEFALSE0100

trueFALSE55

f<=rf<rrequiredfinished

The bug on the previous side can only be found when the left-hand side
of the operator is equal to the right-hand side. For all other values, the
code will do the right thing for the wrong reason.

Page 33

Here are the ways you should test relational operators. ε is a very small
value. If both sides of the expression are integers, ε should be 1. If one
of the values is a floating point number, it should be a number quite close
to zero. (It’s probably not important that it be the absolutely smallest such
number, but it should be much smaller than 1.)

So, for the expression

finished < required

you should have a test in which FINISHED is a little bit less than
REQUIRED (evaluates to true) and one in which FINISHED exactly
equals REQUIRED (the false case).

33

Testing Relational Operators

A<B, A>=B

A = B - ε
A = B

A>B, A<=B
A = B

A = B + ε

reference

Page 34

34

Use a Program

Type in an expression.
‘q’ to quit.
> a<5 || b && c
Test ideas for ((a<5) || (b && c)):

(a<5) b c
---------------- --------- ---------
a barely < 5 true FALSE

FALSE true true
FALSE FALSE true

a==5 true FALSE

My same program that generates cases for boolean expressions will also
take mixed boolean-relational expressions.

Page 35

35

Why a Program?
…
if ((on && A < 5)||always)

siren.sound();

should be <=

trueFALSE5
…A<=5…… A<5…A

FALSE
on

true
on

true
always

never evaluated5
…A<=5…… A<5…A

trueFALSE5
…A<=5…… A<5…A

reference

The program is useful because getting mixed boolean-relational operators
right is a little tricky, as shown by the example on the slide.

You might decide you want to write a test with A=5. But if ON happens to
be FALSE, the relational expression will never be executed. So, if the
code should read A<=5, it will never be presented with the value that
would detect that. Bug not found.

Suppose, though, that ON is true. The expression will be evaluated. If the
bug exists, it will yield the wrong value. It will produce FALSE when the
correct code would produce TRUE. So far so good!

But what if ALWAYS is true? Then it doesn’t matter what the first term in
the || is - the whole expression will always be TRUE. The failure will be
“damped out”.

My program gives the right test ideas in such situations (unless it has a
bug).

That is, the case in which A is 5 will always have ON be true and have
ALWAYS be false. Even better, the expression will have the same
number of test ideas (4) as an expression without the relational operator.

Page 36

36

Remember…

“… trying to write too many tests usually
leads to not writing enough. I’ve often read
books on testing, and my reaction has been to
shy away from the mountain of stuff I have to
do to test… You get many benefits from
testing even if you only do a little testing….”

-- Fowler, Refactoring (1999)

I’m worried that it won’t seem I’ve given you much: a one-page sheet of
paper and a program to run to get a few additional test cases.

But I want to err on the side of not overwhelming you with work. Once you
have a visceral understanding of the value of testing, you can add
additional techniques.

Page 37

37

A (Design) Day in the Life

• During interface design, use catalog
• When booleans and relationals are

known, write tests
• Get the design right

new featurenew featurenew featurenew feature

design tests /
design interface /

plan implementation

tests

code

Now that we’ve seen some techniques, let me describe how I use test
design in my own programming.

I don’t claim that I always do exactly what I describe here. Sometimes I
do things somewhat differently, sometimes for good reasons, sometimes
for bad. It’s accurate to say that my standard practice orbits around this.

I think about design and interfaces before coding.

I use the catalog (which I have memorized) to remind me of special cases
that have to be handled in my design. If a method has to do something
special when condition A and condition B are both true, I know three tests
to write.

My goal during design is to use test ideas to prepare the way for coding.

Page 38

38

A (Coding) Day in the Life

new featurenew featurenew featurenew feature

missing cases and stupid ideas

tests

code

design tests /
design interface /

plan implementation

• As you find new booleans or
relationals, write new tests

• Get the code right

When writing code, I discover new booleans and relational operators. As
a hoary example that’s never actually come up, I might need to sort an
array. I decide to use a quicksort if the array is big, an insertion sort if the
array is small. That’s not something that I considered during design, but I
now have this boolean:

if (a.length < 15)…

and two test cases:

array length 14

array length is 15

(The exact boundary doesn’t matter in this case - there’d be no practical
difference if I had intended to use <= and made a typo - but I might as
well use it.)

Thinking about test cases helps me get my code right as I write it and
discover new things.

Page 39

39

A (Cleanup) Day in My Life

cleanup - documentation and
new tests based on it

missing cases and stupid ideas

tests

code

design tests /
design interface /

plan implementation

new featurenew featurenew featurenew feature

My brain is funny. I can’t write decent comments while I code. “Coding
mode” is just different than “explaining things to a reader mode”.

So, after coding, and after a pause to try to forget some of what I know is
“obvious” about the code, I go through and do a cleanup pass. This pass
also includes things like variable renamings and other refactorings. I’m
not surprised when I discover new missing cases or other code I should
add to improve things.

A part of adding code is adding tests for that code.

Page 40

40

Mammal Stories? Questions?

“Mammal stories” is refers back to the dinosaur vs. mammal distinction
from slide 2.

Page 41

41

Outline

• Test design
–three techniques
–tips for increasing bug-finding power
–two more techniques

½Test implementation
½should this test be automated?
–test suite maintenance
–test implementation tips

We’ll now switch gears and talk about what to do with tests after they’re
designed. The first topic is how to decide whether a test should be
manual or automated.

Page 42

42

Most of the time, I’m depressingly uncontroversial. Even when I want to
stir up a fuss, people don’t get excited.

There is one way that I can get a rise out of people, though, and that’s to
talk about test automation. I do it by saying that many people try too hard
to automate, and that a completely automated set of tests is probably a
waste of effort.

If you bristled at that, please withhold judgement for a bit. Thanks.

(And please note that I did not say that “automated tests are a waste of
effort”. Every testing effort should include some automated tests.)

You can find a more detailed discussion of many of the points in the next
two sections in my paper “When Should a Test Be Automated?”,
http://www.testing.com/writings/automate.pdf. That discussion is targeted
to “black box” testers who are testing through the product’s external
interfaces, but the basic argument is more broadly applicable.

Page 43

43

Tests Are Economic Entities

va
lu

e

ignoring thinking manual automated

co
st

Automation value is often overestimated

Automation cost is often underestimated

A given test has a cost and provides some value.

Sometimes a test costs more to automate than it would to run it once. For
example, if you have a GUI available, it may be easier just to poke values
into the GUI than to write a chunk of Java code to call methods with the
same values. Other times, automating a test is cheaper than running it
manually. Load testing is the canonical example. How do you want to test
your web site? Rent a stadium, fill it with people, then use the public
address system to tell them all to click at the same time? Or use a load
testing tool?

The value of an automated test is always more than the value of a
manual test. (Well, there are exceptions, but those are, I think, not
relevant to programmer testing.)

But it has to be enough more to exceed the additional cost of automation,
if any. (If there’s no additional cost to automation, by all means,
automate.)

(Note that it can be the case that both manual and automated testing are
too expensive - in that case, you just think. Perhaps you walk through the
code by hand.)

I think people often overestimate the incremental value of automated
tests. They also underestimate the cost. Thus, they over-automate.

Page 44

44

Decide on Tests Individually

• What is the cost?
• What is the value?

• Step 1: Decide for this task

Okay, that’s all very well. Some tests should be automated and some
should not. But which? How do you make the decision for a specific test?

Here’s how I’ve started to think about it. I’ve changed my approach
somewhat these days, under the influence of Extreme Programming and
testing colleagues like James Bach (www.satisfice.com) and Cem Kaner
(www.kaner.com). I certainly hope my thinking continues to evolve. Until
then, I offer this for your consideration.

First, I want to break the decision down into subdecisions. The first is to
decide whether automation will help me in this task, with what I’m doing
now. Will it help me finish implementing today’s feature?

The second subdecision involves worrying about how automation will be
useful in future tasks.

Each subdecision is a balancing of cost and value.

(Note: if you read the “When Should a Test Be Automated” paper, you’ll
find a somewhat different approach. I still think that one is valid, mainly
because the context - GUI test automation - is different.)

Page 45

45

Cost Differential of
Automation?

• How much more effort will it be to
automate than to run manually?
–manipulating linked structures?
–popping up browsers?

Present cost is pretty easy to estimate.

If, as in the running example, the code being tested manipulates simple
linked structures, there’s no reason not to automate. Even if you’re
working in a programming environment with an interpreter (like Lisp or
Smalltalk), it is usually only negligibly harder to type test statements into a
jUnit format than it is to type them directly into the interpreter and look at
the printed result.

On the other hand, suppose that your feature pops up a browser. There
are various things to check:

• if there’s an old browser window running, does it use that instead of
creating a new one?

• if the old window is obscured, is it raised to the top?

• if the browser is displaying a modal dialog,
does the code behave correctly? (What is
correct in this case?)

• if the preferred browser has been changed from the default, is the
correct browser invoked?

These are all pretty trivial to test manually, but much harder with an
automated test. (I suppose… I don’t know anything about invoking
browsers, just that I’ve seen products botch some of these things.)

Page 46

46

Expected Value of Rerunning
the Test Often?

What will be the value of rerunning a newly-created test while you work
on your current task? It depends on how much the code will change
during the task. Let’s look at two extreme cases.

The first timeline shows a very discrete coding process. A first chunk of
code is written, as are its tests. Then another chunk is written, and
another, and another. During all this time, the first chunk’s tests are run
again and again and again. If that chunk of code doesn’t change, nor
does any of the code it depends on, running those tests adds no value. It
can’t. The same inputs exercise exactly the same code, so they will
always give exactly the same result. That result must always be a “pass”
(since you don’t move on from the first chunk of code until all the tests
pass).

In the second timeline, that first chunk of code changes several times.
The changes are required by the writing of other chunks of code. Since
the tests for the first chunk are now executing changed code, they may
have value - they may find bugs.

So predicting the value of a test boils down to predicting how much the
code being tested, and the code it calls, is going to change during this
task.

Page 47

47

What Do You Lose by Running
the Manual Test Late?

The alternative to an automated test is a manual test. (I include in
“manual test” all forms of semi-automated tests, ones that are partially
manual.)

A manual test for a chunk of code will be executed much less often. It’s
quite likely it will be run only twice.

• The first time is when the chunk of code is originally written.

• The second time is when the task is finished and the code is being
integrated. All the manual tests are run one more time, just to see if
anything’s been broken since the first time they ran.

In the first scenario, the second run of the manual test won’t discover any
bugs. The chunk of code hasn’t changed, nor has any code it depends
upon. You lose nothing by not running tests often.

In the second scenario, there’s a much larger chance that the second run
will find a bug. Then you have to fix the bug, which will be harder than if
you’d caught it earlier. And you have to run the test against the fixed
code. Further, it might be prudent to rerun all tests for all code that
depends on your fixed chunk. Certainly you’d rerun those tests if your fix
required other code to change to match.

Not having automated tests is costing a lot of time. It’s looking now like
paying the extra cost for automation would have been well worth it.

Page 48

48

Yes, You’ll Be Wrong

• But less wrong
• Learn, learn, learn

When do tests find bugs?

It’s hard to predict what will happen for a particular task. Will you really
know whether some chunk of code will change a lot or not at all?

Perhaps not. But it’s my faith that you’ll make better decisions than if you
don’t think about the tradeoff, that if you adopt the default strategy of
“automate everything, except when it’s too hard to stomach”.

Mistakes won’t be fatal, after all. If the code starts to change a lot, now
you can automate the tests. If you automated when you didn’t need to…
oh well, the tests aren’t doing any harm.

Over time, I suspect you’ll get better at making the decision as you watch
and see which tests actually prove useful.

Just a note here. Most of the value of automated tests is gotten the first
time they’re run. That is, a test is much more likely to find a bug that first
time than in any automated repetition. Even in projects with a large
automated test suite, rerunning automated tests finds the minority of
bugs. Most are found by new tests. I describe the results of a survey I
took at http://www.testingcraft.com/regression-test-bugs.html

Page 49

49

Step 2: YAGNI

• Can you predict future value?
–will the code change?
–will the test exercise the change

well?

• Can you predict future cost?
–how much maintenance will be

required?

• If it’s not worth it today, it won’t be
worth it next year
–exception: smoke tests

What about future value?. The future is hard for me to predict, so I won’t
try.

There’s a principle in Extreme Programming called YAGNI (“You Aren’t
Going to Need It”).
http://www.xprogramming.com/Practices/PracNotNeed.html

It advocates not writing code because you think you’ll need someday.
When someday comes, you’ll probably need something different. Instead,
write only the code you know you need for this task.

Let’s extend the principle. Suppose you have a test that wouldn’t be worth
automating for your current task, but which, well, might find some bugs
someday. If you don’t need it now, you aren’t going to need it then. Tests
have value if they exercise changed code - but you can’t predict what
changes are coming.

The dominant long-term cost of an automated test is maintenance.
Should you try to predict the cost of future maintenance? To do that, you
must predict how the code will change next year, and how those changes
will affect tests. You’ll be wrong often enough that it’s not worth trying.

I buy this XP analogy, mostly. However, I think it’s always useful to have
some broad but shallow tests for basic function. These are commonly
called “smoke tests”. (By analogy to electronics: if you plug it in and
smoke pours out, no need to test further.) These simple smoke tests I
think will mostly suffice for refactoring. (Refactoring is preparatory
maintenance; restructuring the code to support changes you’re about to
make to it.)

Page 50

50

Short-sighted?

• Locally optimal / globally pessimal

Not quite worth it
to me

Not quite worth it
to me

Not quite worth it
to me

Not quite worth it
to me

Not quite worth it
to me

Not quite worth it
to me

Not quite
worth it
to me

Not quite
worth it
to me

If something is difficult to automate, that’s because automation requires
substantial support code. That support code might be useful to someone
else automating their tests. Is focusing only on value to yourself too short-
sighted?

Put another way: a problem with this approach is that it alone would never
have led to the jUnit framework. No one person would be justified in
inventing a really good framework just for her own tests. But, without the
framework, many fewer tests would be justified. (This is the “if everyone
acted as if their vote didn’t count…” problem.)

No argument. However, building a framework that’s not justified for this
set of tests, but that would be worthwhile for other programmers or later
sets of tests, is properly a feature request. When you’re working on your
feature, concentrate on it. Don’t spend time on infrastructure tasks that
won’t pay off now. Get them scheduled as separate development tasks,
maybe one you do before starting this task.

Page 51

51

Mammal Stories? Questions?

Let’s talk about people’s experience with test automation.

Page 52

52

Outline

• Test design
–three techniques
–tips for increasing bug-finding power
–two more techniques

½Test implementation
–should this test be automated?
½test suite maintenance
–test implementation tips

So you’ve written some automated tests. What happens to them now?

Page 53

53

What’s the Test Lifecycle?
Test

created Test
run Code

change

Test
runCode

change

Test
run Code

change Test run;
it’s dead

Tests have the opportunity to justify their existence only when the code
they execute changes. That’s when they can find a new bug. The code
they execute can be the code that you intended to test, or code that it
calls, or code that that code calls, etc.

At some point, one of the code changes could break the test. That is, the
code behaves differently than it used to, but the different behavior is
intentional, not a bug. Since the test expected the old behavior, it flags a
failure. To fix the test, you’d have to change it to expect the new behavior.

At that point, I call the test “dead”. The question is what to do with the
corpse.

Page 54

54

What to Do When the Test Dies?

• Throw it away
–emotion alert!

• Fix it
• Fix it somewhere else

This is properly a per-test decision

(“Must fix all” Í two year itch)

There are three options.

• You can throw the test away. My observation is that many people are
overly reluctant to do that. (I certainly am.) That is, a person who would
not choose to spend the time to write the test in the first place will, as a
matter of course, spend the same amount of time to fix it. The effort to
create the test is, in economic terms, a “sunk cost” (*) and should have no
effect on future decisions.

• You can fix the test.

• You can move it somewhere else. (I’ll explain what this means later.)

It’s important that you made the decision separately for each test. I
speculate that the feeling that you either need to fix all of the tests or give
up on all of them leads to what I call “the two year itch”, by analogy to the
“seven year itch” that is supposed to afflict married couples. After some
time, all the effort of maintaining a relationship seems like too much. So
there comes a day when the programmer gets a bunch of broken tests,
looks at them, contemplates the work needed to fix them, sighs, and sets
the whole suite aside to “fix when I have time”. That, my friends, is all she
wrote. Those tests are gone for good. I’ve seen this a lot.

(*) A definition of sunk costs:
http://www.microeconomics.com/essays/cost_def/cost_def.htm#Sunk

Some discussion:
http://www.best.com/~ddfr/Academic/Price_Theory/PThy_Chapter_13/PT
hy_Chapter_13.html

Page 55

55

Throw Away or Fix?

• Same decision process as before
• You’re making some changes

–what’s the value of the test?
–how much effort to fix?

You should reason about whether to throw the test away or fix it in the
same way as before. You’re making some changes to some code. Most
likely it’s the code the test was written for. Or it could be deeply buried
code, and the changed behavior happens to show through to the interface
the test exercises. In either case, you’re performing some task. Will the
test provide value for that task that exceeds its cost?

Page 56

56

My Hunch About Test Value

• For many refactorings, smoke
tests are sufficient

• Many automated tests gain value
from the indirect bugs they find.

!

!

Remember that smoke tests are the broad but shallow tests that are
basically sanity checks: does it work at all?

My hunch is that for refactorings - changes of code that are intended to
leave behavior alone - the smoke tests will catch most of the bugs. (I’d
welcome discussion and experience reports from those who are expert in
refactoring.)

I further believe that much value from automated tests comes indirectly. It
seems that many automated tests find bugs that don’t have anything to
do with the reason they were written. That is, the test was written to
satisfy a test idea (“will it work with an empty collection?”), but the bug is
due to some chance combination of values passed to called methods that
provoke a problem deep in some support code.

Chriss Agruss of Autodesk analysed a large number of bug reports. He
concluded that perhaps up to half the bugs (from tests run through the
user interface) were in support code, not in the code directly tested.
(Personal communication)

Other than that, I don’t have any strong evidence for my claim.

Page 57

57

My Default

• Restore smoke tests
• Restore indirect tests
• Discard others

• And create new tests that exercise
the changes!

So my default inclination is to fix up smoke tests.

And I’d be much more likely to fix a test that exercises support code than
one that checks whether the sqrt method correctly rejects numbers less
than zero (assuming the error check calls no support code). My
justification is that I know the error-handling code works now. If I ever
change it for some reason (maybe to change the error message), I’ll
quickly create a new test for that change. Until then, it’s unlikely that other
changes would inadvertently break that error check.

Which tests exercise support code in new and interesting ways? They’re
ones that have complexity and variety. That’s a later topic: see the “tips
for increasing bug finding power” subsection of Test Design Reference.

As for the rest of the tests… I fight my pack-rat behavior (you should see
my basement) and throw them away. It’s hard.

But please remember that all changes to behavior come with their own
tests. So my test suite doesn’t eventually shrink down to near-nothing. It’s
continually replenished with tests that I know are important. I’d rather
spend time on those tests than on refurbishing tests that I think might
come in handy someday.

Page 58

58

Deleting
Redundant TestsjU

n
it

jU
n

it

jU
n

it

What’s the unique value?

Practicalities

There’s another reason you might delete a test. The class with the broken
tests is perhaps used by another class. That class also has tests. Some
of its tests also exercise the class with the broken tests.

It’s even possible that tests from several classes away exercise the class
under test.

So perhaps the broken tests are redundant. Should you fix a test that
provides only redundant value?

My tendency is to delete broken tests that I know are redundant.

Now, there are some practicalities here.

• Do you really know the test is redundant? Maybe that test on the top left
class looks as if it ought to exercise the lower-right class, but it really
doesn’t. By not fixing the broken lower-right test, you’re increasing the
chance that it’s not well tested.

• Even if the top-left class’s test exercises the lower-right class today,
changes to it - or to any class along the way - could mean that it no longer
does.

• Debugging is harder when the tests find a bug in the lower-right class.
Faults are not as isolated.

These are risks you have to decide whether to take. I’ve taken them in the
past and not had horrible shocks, so I intend to keep taking them. (Note
that the systems with which I took the risks didn’t have a huge amount of
internal change. The greater the change, the greater the risk of bullet two
mattering.)

Page 59

59

Moving
Broken TestsjU

n
it

jU
n

it

jU
n

itStable interfaces often appear

Systems often either start with or grow stable interfaces. The classes in
those interfaces have public methods whose signatures don’t change and
whose behavior stays the same (or grows by addition, which should not
break existing tests).

This is especially true when those interfaces become published APIs that
programmers outside your organization use.

Up to now, I’ve been XP-ish in my reluctance to make predictions about
the future. But I will predict that a stable interface will stay stable. More
precisely, its tests will break less often than tests for classes behind the
interface.

Therefore, if I can “promote” a broken test so that it talks to methods in
the stable interface, I’ll do that. It reduces the chance that I’ll be fixing that
test again… and again… and again...

Page 60

60

The Steady State

So my vision of the long-term history of a product test suite is that old
tests will stay where they are if the classes they test never change and
break them. As tests break, they may migrate out to a stable interface. As
those tests migrate out, new tests are created to take their place. Those
tests are ones specifically written for the changes being made.

Page 61

61

Disclaimer

• This is new practice
for me

• I used to write
almost all my tests
through a stable
interface

Now I should confess that I have not personally lived with a system that
did this. In the past, I was preemptive. I first identified (and built) a stable
interface. Then I implemented my features, always writing my tests
against that stable interface.

I tried to have as few tests as I could inside the interface. I restricted
internal tests only to code that was really hard to exercise through the
stable interface.

Some code is easy to execute from the external interface, but it’s hard to
judge from there whether the code behaved correctly or not. Typically, it
makes some change to a big internal data structure whose state is not
readily visible.

Rather than write internal tests, I preferred to deal with that by providing
“test points” or “viewports” into the code that allow the tests to query the
state of those structures. (The impolite term for this is “breaking
encapsulation”.) That made the tests somewhat vulnerable to changes in
the interior, but not as vulnerable as purely interior tests.

There’s a bit more on breaking encapsulation later in the course.

Why have I switched? I realized I was afraid of change. I hated the
thought of the “wasted” work of updating tests. And I was too intent on
saving all my tests - so I updated them, even if I should have thrown them
away. I’m more comfortable these days with the need to redo things, less
worried about getting anything right the first time.

Page 62

62

Mammal Stories? Questions?

Page 63

63

Outline

• Test design
–three techniques
½tips for increasing bug-finding

power
–two more techniques

• Test implementation
–should this test be automated?
–test suite maintenance
–test implementation tips

We’re now in the reference portion of the tutorial notes.

Page 64

64

A Practicality:
The Test Idea Checklist

		�H[SUHVVLRQ

__�H[SUHVVLRQ

��H[SUHVVLRQ

QR ERROHDQ RSHUDWRUV��H�J���´Dµ�

XQERXQG��XQQHHGHG�YDULDEOH�LQ�__�H[SUHVVLRQ

XQERXQG��XQQHHGHG�YDULDEOH�LQ�		�H[SUHVVLRQ

XQERXQG��QHHGHG�YDULDEOH

GHVFHQG�LQWR VXEH[SUHVVLRQ �UHFXUVH�

«

In the main body of the tutorial, I have made it seem that as soon as I get
an idea for a test (e.g., “eval an && expression”), I sit down and write the
test.

Actually, I’m more likely to add it to a checklist of test ideas, as shown on
the slide. I’ve made that checklist be handwritten, on what’s supposed to
represent a piece of paper. That’s to emphasize that the checklist is not
supposed to be any big deal, nothing formal, nothing preserved, nothing
checked into the CM system, nothing reviewed by independent auditors.
It’s supposed to be lightweight.

In practice, I sometimes handwrite it, sometimes type it in. I do whatever
seems more convenient at the time. (On airplanes, I handwrite it. If it
contains pictures or tables, I handwrite it. Etc.)

(If you’ve read my book, The Craft of Software Testing, or seen some of
my other writings, you may know that I’ve also referred to “test ideas” as
“test requirements”. In that book, I talk about the “test requirement
checklist”. This checklist is the same thing, used in the same way.)

Page 65

65

&& expression
|| expression
! expression
no boolean operators (e.g., “a”)
unbound, unneeded variable in || expression
unbound, unneeded variable in && expression
unbound, needed variable
descend into subexpression (recurse)

One Test Idea,
One Test

&&

cb

b = true
c = false

expect: false

What can you do with a checklist?

Here’s one thing: you can take each test idea and write a test for it. The
slide shows a test for the first test idea.

Page 66

66

&& expression
|| expression
! expression
no boolean operators (e.g., “a”)
unbound, unneeded variable in || expression
unbound, unneeded variable in && expression
unbound, needed variable
descend into subexpression (recurse)

Another Test Idea,
Another Test

||

cb

b = false
c = true

expect: true

Here’s a second test, for the second test idea.

Page 67

67

&& expression
|| expression
! expression
no boolean operators (e.g., “a”)
unbound, unneeded variable in || expression
unbound, unneeded variable in && expression
unbound, needed variable
descend into subexpression (recurse)

One Test,
Many Test Ideas

&&

c||

b

a

!

a = false
b unbound
c = false

expect: false

However, you could also implement one test that “satisfies” many test
ideas. The single test on the slide satisfies six. I need only write that one
test for those. I’ll need one or more additional tests for the remaining
requirements.

The total number of tests will be smaller, but each test is likely to be more
complex.

Page 68

68

Advantages of Simplicity

• Easier to debug
• Faster to write
• Better documentation of code

Which should you do? What are the tradeoffs?

• Debugging is easier with simpler tests. Suppose you find a bug with the
previous slide’s test. Which of the 6 things the test did caused the bug?

• It might seem that more simple tests, being more tests, would take
longer to write. In fact, the reverse seems to be true. The time spent
thinking about which test ideas to satisfy in a complex test outweighs the
savings of less typing of test code.

• Some (XP people, for instance) rely on tests as concrete examples of
what the code does. Complex tests aren’t useful for that.

Page 69

69

The Advantage of Complexity

• You missed something
–all test techniques are incomplete
–you make mistakes
–techniques can add blinders

• Simple tests test only what you
intended
–but complex tests test more

The reason for complexity is that you missed something while creating
test ideas. The techniques you use - the ones taught here, and whatever
others you might use - are incomplete. Inevitably, they’ll miss bugs.
Moreover, you might have made mistakes using those techniques and
missed some test ideas that might have led to bugs.

Further - and this worries me a fair amount - using methodical techniques
like the ones taught here can blind you to other test ideas. You might do
only what the techniques tell you.

Simple tests only test what you intended. If you blend ideas into a more
complex test, you stand a chance of inadvertently implementing a test
idea that finds a bug. You test more than you intended. And sometimes,
the act of combining will itself lead to new test ideas. You smack your
head and say, “Aha! There’s something else this code should do!”

That’s what, to me, justifies the additional work of producing complex
tests. They find more bugs. Yes, they find the additional ones through
sheer dumb luck. But I’m not proud. I’ll take bugs from anywhere.

Page 70

70

Further Disadvantages of
Complexity (1)

• Failures are more likely to be masked

&&

c||

b

a

!

a = false
b = false
c = false

expect: false

Complexity brings with it some further disadvantages.

The more complicated the test, the more likely failures are to be masked.
Take the above test. Suppose ! is mis-implemented, so that !X has the
same value as X. In that case, when the test evaluates !a, the value is
false when it should be true. The value of the ||-expression is also,
incorrectly, false. And the value of the whole &&-expression is false.

But that’s the same value as the &&-expression would have had if ! had
been implemented correctly. C being false makes the value of (!A||B)
irrelevant. We say that the error is masked.

Error masking can happen in simple tests, but it’s rather more likely in
complex ones.

Page 71

71

Further Disadvantages of
Complexity (2)

• You’re more likely to make a mistake
–not test what you think you’re testing

• Tests are harder to maintain

There’s another way to incorrectly construct a complex test. You might
not really satisfy the test ideas you thought you were. Often, this happens
because you construct tests by successively adding new test ideas. So,
for example, you might start with a simple expression A&&B, then add an
OR - A&&(C||D) - without realizing that invalidates the reason you created
the original expression.

Taking some care can avoid this problem, but not eliminate it.

Finally, complex tests are more difficult to maintain. In particular, it can be
difficult to maintain their bug-finding power. The maintenance changes
you make later are likely to invalidate some of the original test ideas.
(Note that it’s unlikely that you retained the original checklist, so it can be
hard to guess what the test was all about.)

Page 72

72

What I Do

• Simple tests first, with a touch of
complexity
–keeping smoke tests in mind

• A few more complex tests
– I don’t worry much about

maintenance

So what do I do?

I write a relatively simple set of tests to run first. Those should catch the
obvious bugs in a way that’s easy to debug. Many of them will also make
useful smoke tests that I’ll try to retain for a long time.

I often add a little bit of complexity to those tests by satisfying more than
one test idea, but not at the expense of comprehensibility.

Then I will add a few complex tests. These “soak up” test requirements I
don’t think justify a test of their own but are easy to merge into tests I’m
writing anyway for other reasons. I may also satisfy again some ideas I
already satisfied.

So, for the expr() tests, I’d have tests for simple expressions and also a
few tests for complex, deeply nested expressions.

The complex tests will be difficult to maintain. Yet I want to maintain them
because they’ll tend to find bugs in support code. But since these tests
are largely supplementary to my smoke tests, test updates that invalidate
the test ideas originally satisfied by the complex tests may not be such a
bad thing. It may in fact be preferable to throw away the original complex
test and write a new, rather different, complex test. Remember that the
point of complex tests is to exercise the code in ways you didn’t think of.
Remember also that most tests lose most of their bug-finding potential
after they’ve been run once. So a broken complex test that’s replaced
rather than fixed may be the best thing - and it probably costs about the
same to replace the test as to fix it.

Page 73

73

Further Complexity

I often take complexity one step further. Consider this dialog, which is one
used in Powerpoint.

Some of the options might appear to be independent. For example, does
the Text Anchor have anything to do with Word Wrapping or Rotate Text?
Suppose I thought they didn’t - and so had implemented them as
supposedly-independent code in three separate tasks. I might still write a
single test that incorporated ideas from all three checklists. Perhaps what
I thought was independent really interacted through some shared support
code. Or perhaps figuring out what the expected results of the test should
be would make me realize my design for the features didn’t make sense -
they should interact because that’s what a user would expect.

Unnecessary complexity finds bugs.

It controls how text is laid out in objects like this one.

Page 74

74

Meaningless Variation

• Testing the tokenizer:

• Testing the parser:

"foo&&((a||BARFLY)&&crud_puppies)"

"a && b \t|| c"

There’s something else I do that’s also inspired by my certain knowledge
that I’ve overlooked test ideas. I add meaningless variation to my tests.
Here are two examples.

I have some code that parses boolean expressions. As you might expect,
there’s a tokenizer that splits a string up into lexical units. There’s then a
parser that builds trees from those units.

In the tokenizer, I am absolutely positively certain that it doesn’t matter if I
use upper or lower-case letters. I’m completely sure that ‘_’ is treated the
same as ‘a’. I believe with all my heart that it doesn’t matter if a token is a
single character or twelve characters.

Nevertheless, I try all those variants because, well, I’ve been certain but
wrong before, and it’s easy to do.

Similarly, in the parser tests, I could assume that the tokenizer works.
White space should be completely irrelevant to parser tests. However, it
doesn’t hurt to toss in a few tabs occasionally.

Note that, in the parser tests, I always used one-character lowercase
names. I don’t insist on endless variation; that’s too much of a strain. But I
toss in more variation than I think I’ll need. Occasionally, it finds me a
bug.

Page 75

75

Where Are Bugs Found?

• Many bugs that tests find are not
in the code directly under test

Class BindingSet

Boolean eval(…)

!

!
!

run all tests, all the time

Here’s another reason for meaningless variation.

Tests find bugs when you feed inputs to a method and it produces the
wrong results. According to the IEEE Standard Glossary of Software
Engineering Terminology, that wrong result is technically called a “failure”.

But that failure only happens because there’s some underlying “fault” -
some wrong code. That code may live in the method you called. Or it may
lie in another method in the same class (a method invoked by the method
you called). Or it may live many method calls away in a completely
different class.

Ideally, all those other methods should be so well tested that you’ll never
find bugs (faults) in them. Well, they’re not, not in this imperfect world.

Variation that’s meaningless to the method you intend to test might well
be meaningful to methods you’re indirectly testing. For that reason, it’s
good. It helps you find bugs.

Stripping unneeded variation from your tests might mean that all methods
indirectly exercised are exercised the same way each time. That reduces
the chance of stumbling over bugs.

Because tests often find bugs in far-distant code, it’s wise to run all tests
that could exercise code as you’re changing it. Perhaps not as often as
you run the tests specific to your code, but certainly before you declare
your task done. (In XP, all unit tests for all code must run and pass before
new code can be integrated.)

Page 76

76

Another Example

Expr orig = Parser.parse(“ foo_bar&&(m.z)”);

CoverageReporter reporter =
new CoverageReporter(expr);

Expr other = orig.mutate();

assertEquals(other.toString(), “foo_bar || m.z”);

Buying trouble for the future?

Here’s another example of variation and some complexity. I’m testing the
Expr.mutate() method. That transforms one Expr into another, in this case
by replacing the && with an ||. (That isn’t really the way the mutate()
method works, but I didn’t want to complicate this example with detail.)

I used the Parser.parse() method to construct the tree, because it’s easier
than building a tree by hand. It also tests the parser. I added some
whitespace to the string because - what the heck - I’ll test the tokenizer
too.

Next, I included a completely irrelevant line. A CoverageReporter does
something mysterious to the innards of Exprs that should not affect
anything about mutating them… unless there’s a bug. So I tossed in this
“no op”. (By the way, this isn’t what CoverageReporter really does,
either.)

Then I tested in the usual way and checked results by converting the Expr
into a string and using string comparison. That’s easier than walking the
tree with some code. Note that it does expose me to a risk: what if
Expr.toString() changes the way it formats expressions? My test will now
break. But the present savings is probably worth that future risk.

There’s another risk. Errors in Parser.parse() or Expr.toString() might
mask errors in Expr.mutate(). In the application this example was drawn
from, one error was indeed so masked. I found it not too much later,
though.

Richard Schooler has an interesting article about introducing variation into
tests in the “Front Line” department of Vol 1. No 1 of Software Testing
and Quality Engineering. I hope to put it on
www.testingcraft.com/techniques.html soon.

Page 77

77

Stumbling Over the Unnoticed

Chance favors the prepared mind.
- Pasteur

Dumb luck favors the willfully random.
- Marick

You might choose to read Robert Binders’ Testing Object-Oriented
Systems. It’s over 1000 pages. Or Boris Beizer’s Software Testing
Techniques (over 500). You might do everything in those books to test
your code.

You’d still find bugs through sheer dumb luck, by accidentally doing things
you hadn’t intended. That’s the way testing is.

Given the importance of dumb luck, it’s good to organize your work so
that luck works on your side. That’s what complexity and variation do.

Page 78

78

A Problem:
Deadening Your Mind

• Techniques should increase
creativity, not prevent it

• Catalog as idea-generator
–the less obvious the match, the better

• Brainstorming and other creativity
techniques

• User focus

Applying techniques by rote will lead to too many missed ideas. So you
need ways to get more ideas.

• Suppose you’re looking at the catalog and you say, “I don’t really see a
collection in the feature I’m implementing. Well, if you look at it in this
screwy way, you could interpret it as kind of having a collection”… go for
it. See where the interpretation leads you. Sometimes these screwy
interpretations make you realize you left something out.

• Brainstorming techniques and other techniques have been developed to
unleash creativity. I haven’t studied them enough to know how to apply
them well to testing, but they must be useful, especially for those who pair
program. (For brainstorming, see How to Make Meetings Work, by Doyle
and Straus, and Facilitator’s Guide to Participatory Decision-Making, by
Kaner et. al. Both are worth getting for other reasons.)

• It’s easy to concentrate on code in isolation. Try to relate it to the
eventual user. What will that user do that will cause your code to get
called? Try to avoid the “who would have ever guessed they’d want to do
that?” syndrome.

Page 79

79

Luck Can Work Against You

…
if (a || b) {

bomb.detonate(2 * time);
} else {

bomb.detonate(time * time);
…

What if time=2?

variety

I’ve been talking about getting luck on your side. But it can also work
against you.

We’ve been concentrating on inputs to the code. For example, in the
section on boolean expression errors, I showed a program that will make
a boolean expression containing one of a set of likely errors evaluate to
the wrong value. In the above code snippet, it would give you a test that
would force the program to take the wrong branch of the IF statement.

Unfortunately, in that test, TIME might have the value 2, through sheer
bad luck. The wrong branch will do the same thing as the right one.

Rats. Bug missed. Right answer, wrong reason.

You can’t completely avoid this problem (not affordably*). But, as you
write your tests, it’s worth asking yourself “If the code does the wrong
thing, will I be able to tell?”

Adding variety to your tests (e.g., not having all the tests use 2 as the
value of time) can help. (Not with this particular case, but with more
complicated ones.)

* The way to avoid this problem is to use a technique called “strong
mutation”, first proposed in Demillo, Lipton, and Sayward, “Hints on test
data selection: help for the practicing programmer”, IEEE Computer, April,
1978.) It’s not affordable, though.

Page 80

80

A Common Testing Error

Looks OK to me…

test then code

Even if the program does produce the wrong result, you might not notice.
People are fairly good at looking at incorrect program output, shrugging,
and saying “Yeah, looks OK”.

(See these papers for experimental evidence:

V. Basili and R.W. Selby. ‘Comparing the Effectiveness of Software
Testing Strategies.’ IEEE Transactions on Software Engineering, vol. SE-
13, No. 12, December, 1987.

G.J. Myers. ‘A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections.’ Communications of the ACM, Vol. 21, No. 9,
September, 1978.)

The way to best avoid this problem is to decide what’s correct in advance,
by writing your tests before you write your code. If you run a few test
cases in a debugger or interpreter, check to see what the answers are,
think they’re OK, then write the tests to check that those answers keep
coming back, there’s a chance you’ve just “immortalized” a bug - the tests
will keep passing the buggy output.

Page 81

81

Outline

• Test design
–three techniques
–tips for increasing bug-finding power
½two more techniques

• Test implementation
–should this test be automated?
–test suite maintenance
–test implementation tips

Here are two more test design techniques.

One looks for mistakes handling results of method calls.

One looks for overlooked variables.

Both target an important class of fault, the fault of omission.

Page 82

82

A Fault of Omission

...
case RAISE_LANDING_GEAR:

if (plane_on_ground) {
error(“the plane will fall down”);
break;

}
/* do whatever’s required */
break;

...

Here’s a story that I don’t know is true, but that I’ve heard from two
separate sources.

Once there was a jet fighter. A test pilot got in it, turned it on, and lifted
the landing gear - while the plane was on the ground. It broke.

What was the cause? I don’t know, but it could well have been code like
the one in the slide. There’s a big event loop (or whatever) taking inputs
from the outside. One of those inputs is the RAISE_LANDING_GEAR
command. In the slide, the italicized and underlined code shows the fault.
It is the code that isn’t in the buggy version. It is the code that would have
prevented the command from taking effect.

Such faults - ones that are fixed by adding code - are called faults of
omission. They are typically faults where someone - some programmer or
designer - forgot about a case or requirement. They’re what Bob Glass
memorably called “code not complex enough for the problem”. (Robert L.
Glass, “Persistent Software Errors,” IEEE Transactions on Software
Engineering, March 1981.)

Page 83

83

Faults of Omission:
Some Numbers

• 47% of USENET patches (Marick)
• 30% of bugs in a shipped

Microsoft product (Sherman)
• 22%-54% of shipped product bugs

(five other studies)

Faults of omission are an important class of fault in shipped products.
They are bugs that escape programmer testing and independent testing.

For citations to all the studies, and more discussion of faults of omission,
see “Faults of Omission” on my web site:

http://www.testing.com/writings/omissions.html

It was originally published in Software Testing and Quality Engineering,
Volume 2, Number 1, January 2000.

Page 84

84

Faults of Omission and Testing

• Test, then code
–before the code is written, you might

avoid them
–after, you won’t detect them

• Test design techniques should
help
–catalog does, in part
–here are two more

How can you find these faults?

• Once you’ve written code and overlooked something, you’re in some
sense “locked in” to a particular implementation. It’s now harder to realize
that the user (or the environment, or some other source of inputs) is going
to do something you didn’t anticipate.

So writing tests after code will cause weaker tests and thus weaker code.
Write the tests first.

• The catalog helps you find certain faults of omission: failure to handle
null pointers, for example. As you build up your own catalog of test ideas
(probably a mental one), you’ll find that it contains ideas for catching
faults of omission.

• The rest of this section describes two techniques that target faults of
omission.

Page 85

85

Any Good Stories?

But first, have any good stories about faults of omission?

I am one of the technical editors for Software Testing and Quality
Engineering magazine. We have a department called Bug Report. In it,
authors describe an interesting bug and recount what they learned from it.
If you have a good bug and would like to write an article, contact me at
marick@testing.com.

Page 86

86

Design Technique 4:
Method Call Results

• Omitted handling of results

File file = new File(stringName);
if (file.delete() == false) {…}

One common type of fault of omission is failing to handle some result of a
method call.

The first example in the slide shows a call to File.delete(). The bug is that
File.delete() returns a boolean to indicate whether the deletion is
successful. The underlined and italicized code is omitted: the programmer
assumed that deletion always works. Well, it doesn’t.

This next test technique checks for such overlooked results.

Page 87

87

What About Incorrect Handling
of Results?

• This is checked by the Boolean
criterion

• Not completely, but well enough

stagefile = File.createTempFile(“recrunch”, “stg”);
…
if (stagefile.delete() == false && !failFast) {

throw new StageError(“remnant: stage.tmp”);
}
…

What about the types of results that haven’t been overlooked. Wouldn’t it
be good to check not only that they’ve been remembered, but also that
they’ve been handled correctly?

Recall that we’re going to be exercising all the code. Among other
reasons, the boolean test design technique guarantees it. So we’ll have
tests that trigger both bugs in the code on the slide:

• the incorrect ! in front of failFast.

• the fact that the error mentions a file, “stage.tmp”, that is the wrong
name. Apparently, the name was changed, but this mention of the old
name wasn’t fixed.

Merely exercising a line of code won’t find all the bugs in it. Here’s a bug
that won’t necessarily be found:

a = b/c; // what if c is 0? - a fault of omission.

However, I believe the five criterion presented in this tutorial are good
enough for programmer testing.

Page 88

88

The Test Technique

• Exercise all distinct results of a
method call

• “distinct result” = any change in
state that might have to be
handled specially by this caller

• We’ll look at two kinds of distinct
results

So, a good set of tests will exercise all the distinct results of any given
method call.

What’s a distinct result? (Bear with me - this is hard to explain.)

When the method executes, it changes the state of the world. It might
allocate new objects. It might push return values on the stack. It might
change a global variable. It might stuff values in a database. It might send
data over a network. Whatever.

The continued execution of the caller might have to take account of some
of those changes. For example, it might need to check the return value
and do something special if that’s FALSE. On the other hand, even
though a message printed to standard output changes the state of the
world, that change isn’t something the method needs to take account of.
On the third hand, something written to a database might be, if the
method might then read the database and be affected by the change.

Of these changes or results, some are different enough that checking one
of them doesn’t give you any particular confidence that the other works
right. So you need to check them separately.

Let’s see some specific examples.

Page 89

89

Special Return Codes

• Each distinct error return

• Every clause that should be in the
javadoc

Returns:
true if and only if the file or directory
is successfully deleted; false otherwise

if (retval < 0) // -1 or -2 indicate errors
…

The most apparent case is that each error return from a method should
be checked. Suppose the method returns two error codes, but the code
handles them both together (as in the slide, or by having them both be
cases of a switch statement like this one:

case ERROR1:
case ERROR2:

…

or whatever). Despite the fact that the code treats both values the same,
write tests that return each. Maybe the code shouldn’t treat them both the
same and a surprisingly different result will alert you to that.

More generally, you want to check each return code case that really
complete documentation would spell out. Of course, it’s often the case
that return cases - especially error cases - aren’t described. For example,
I know of one commercial operating system whose documentation
describes only the error returns immediately generated by routines in the
system API - it does not describe the return codes that those routines
pass on from deeper kernel routines.

In such a case, do the best you can.

Page 90

90

This Can Be Tricky

• “The failure case is impossible…”

File file = new File("tempfile");
FileOutputStream s;
try {

s = new FileOutputStream(file);
} catch (IOException e) {…}

// Make sure temp file is deleted...
file.delete() *;

common Unix idiom

*(or use File.deleteOnExit since JDK1.2)

Often, it will appear that error returns are impossible. Sometimes they
aren’t.

The slide shows a Java implementation of a common Unix idiom for
handling temporary files. The goal is to make sure that a temporary file is
always deleted, no matter how the program exits. You do this by creating
the temporary file, then immediately deleting it. On Unix, you can continue
to work with the deleted file. The operating system takes care of cleaning
up when the process exits. It’s quite cute.

It doesn’t work on Windows. The deletion will fail.

Nothing in the Java documentation mentions this as of August 2000. The
documentation does not enumerate the situations in which delete() fails.
A not-painstaking Unix programmer might not write the code to check for
a failed deletion - in her world, it can’t happen. Having not done that, she
certainly wouldn’t write a test case for that “impossible” (but not
impossible) case.

What can be done about this?

In general, nothing. It’s good to know a lot of trivia, like differences
between Unix and Windows. It’s important to try hard to surface and
disprove your assumptions, difficult though that is.

And, after JDK 1.2, use deleteOnExit, which I expect was put in exactly
because of this idiom.

Page 91

91

This Can Seem Pointless

• “I know that case doesn’t matter…”

void foo(Comparator c) {
…
if (c.compare(o1, o2) <= 0) {

…
} else {

…
}

Three distinct results: <0, =0, >0

multiple executions

Another force against just bucking down and trying a case is being
already convinced that it doesn’t matter. A java Comparator’s compare()
method returns either a number <0, 0, or a number >0. Those are three
distinct cases that might be tried.

The code lumps two of them together. But that might be wrong. The way
to discover whether it is or not is to try the two cases separately, even if
you really believe it will make no difference. (Your beliefs are really what
you’re testing.)

Note that you might be executing the THEN case of the IF statement
more than once for other reasons. Why not try one of them with the result
less than 0 and one with the result exactly equal to zero?

Page 92

92

Information Hiding: the Downside

• Think in terms of external meaning

code under test

portNumber := self serverPortFromUser.
portNumber ifNil: …

serverPortFromUser utility

port := FillInTheBlankMorph
request: “Specify server port number.”
initialAnswer: 1024.

(port isNil or: [port isEmpty]) ifTrue: [Æ nil].
(port asNumber <= 1000) ifTrue: [Æ nil].
Æ port asNumber.

There’s a danger that comes when you’re coding - and testing - method-
by-method. Here’s an example. It’s in Smalltalk, because that’s where I
saw it. The code should still be easy enough to understand.

There are two methods. The first, the code under test, wants to establish
a network connection. It calls serverPortFromUser to get a port number.
That method returns two values. It returns a port number chosen by the
user if the number chosen is valid (greater than 1000). Otherwise, it
returns NIL. If NIL is returned, the code under test pops up an error
message and bails out.

I believe that the code was tested with two cases: a valid port number and
an invalid one. That’s what the interface to serverPortFromUser naturally
suggests.

Unfortunately, serverPortFromUser collapses two cases into one. Here’s
what it does. It pops up a window (a FillInTheBlankMorph) that takes a
string and has the standard OK and CANCEL buttons. CANCEL returns
an empty string, which serverPortFromUser relays to its caller as NIL.
serverPortFromUser also checks the value from the Morph (if there is
one). If the number is too small (less than 1000), it relays this erroneous
input to the caller as… NIL. I expect that the programmers also tested
this, and it indeed behaves as intended.

The combination of the two chunks of code, though, has a bad
consequence: the user hits Cancel and gets a message about a bad port
number. All the code works as intended, but it’s still wrong. It was tested
in a reasonable way, but a bug was missed.

The trick to catching the bug is, when testing the using method, to ask
what a return value of NIL means, and thus recover the two special cases
(and find the design flaw).

Page 93

93

Exceptions (1)

• Each exception is a distinct result
–make the called method throw each
–both checked and unchecked

exceptions

try {
…

} catch (IOException e) {}

Exceptions are another type of result. You should make a called method
throw each kind of exception. That will exercise every catch block and
perhaps also reveal the need for an omitted catch block.

Exercising catch blocks is a good idea. Error-handling code is notoriously
error-prone. I’ve indicated that on the slide by showing an extreme case.
Java forces you to catch some exceptions. Sometimes, when
programmers don’t know what to do with them, they catch them and do
nothing - which is usually the wrong thing to do. How to find out? Try it.

Note: for simplicity’s sake, I lied when I said earlier that the boolean
criterion forces every line of code to be exercised. It doesn’t necessarily
exercise catch blocks. This does - and the boolean criterion forces all
lines within them to be completely exercised.

Page 94

94

Exceptions (2)

• Including automatically
propagated exceptions

void foo(Reader r) throws IOException {
…
Tracker.hold(this);
…
… r.read() …
…
Tracker.release(this);
…

}

Why test?

Cases can
be more
subtle

It’s important to test an exception even if all the method does is to
automatically re-throw the exception. The reason? The method might set
up state that needs to be torn down before it returns.

Note that to find the bug, you’ll have to call the method again. But that’s
free, since you’ll have multiple tests for other reasons.

For an interesting article on testing for these sorts of bugs, see Keith
Stobie’s Bug Report, “Testing for Exceptions” in Volume 2, Number 4, of
Software Testing and Quality Engineering magazine.

Page 95

95

A Day in the Life

cleanup - documentation and
new tests based on it

missing cases and stupid ideas

tests

code

design tests /
design interface /

plan implementation

new featurenew featurenew featurenew feature

When do I do all this?

I do some of it when coding. When I know I’ll use File.delete(), I create
the test case for a deletion failure. (Deletion success will probably be
checked in tests I was writing anyway, for other reasons.)

During coding, though, I only create tests for the results I know about.
Later, in cleanup, I check for results I might have overlooked. See the
next slide.

Page 96

96

Why During Cleanup?

• Flow

put
…
Throws:

NullPointerException - if the key or value is null

Here’s an example. Suppose I’m using a Hashtable. My standard use of
the Java documentation is mainly to look at the summaries that show the
method names, return values, and argument types. So, if I’ve forgotten
how to put an item in a Hashtable, I’ll look there to see that the method is
named “put”.

I will rarely look at the full description of put(), which is where it says that
the method can throw a NullPointerException. To be constantly reading
about all the methods I use would destroy the flow experience. Instead, it
works for me to do that check in my documentation post-pass.

Your mileage may vary.

Page 97

97

Implementation

• These cases can be hard to
implement

• Thinking about them is
justification enough

• Let your experience be the guide

The method result criterion can be hard to implement. It can be hard to
force methods to throw their odder exceptions.

You have to make a cost-benefit tradeoff: what’s it worth to me to check
that this case really works? In some cases, it might not be worth enough.

Even if you don’t write and execute the test, you may get enough benefit
by just thinking through the case. It may be obvious that your code won’t
work if the put() method throws an exception.Or the problem might be
subtler, one that requires that you trace through the execution.

Let your own experience tell you how much testing is enough.

Page 98

98

Design Technique 5:
Unused Variables

• A fault of omission from [Marick90]

if (f->is_target && f->deps==0 && f->cmds != 0)

I did a survey of USENET patches in 1990. Here’s one of the bugs. It’s a
fault of omission in some C code: the underlined, italicized code was
added by the patch.

In particular, a field in a structure was overlooked. That seems to be a
reasonably common variant type of omission fault: related variables that
haven’t been considered.

My Usenet survey was published in “Two Experiments in Software
Testing”, Brian Marick, University of Illinois Computer Science department
report UIUCDCS-R-90-1644, November 1990. Sorry, the electronic
version is gone.

Page 99

99

A Day in the Life

cleanup - documentation and
new tests based on it

missing cases and stupid ideas

tests

code

design tests /
design interface /

plan implementation

new featurenew featurenew featurenew feature

where
else might

this be
useful?

So, during my cleanup phase, I read through methods in a class. When a
class uses a variable, I ask “where else should this variable have an
effect?” Sometimes (not often enough) I think of a place. I say, “Aha! I
overlooked something!”

An alternative would be to look at the variable declarations and ask,
“where could this variable be relevant?” For me, it works better to be
prompted by actual uses of the variable in methods. (But your brain may
work differently.) Moreover, scanning through methods for variables
doesn’t confine my thinking to variables declared in the class I’m working
on.

Page 100

100

The Result

Aha!

Complexity and variety

That’s what should happen. Sad to say, I’m not very good at this. I don’t
get as many “Aha!” moments as I should. I can’t concentrate well enough,
or think broadly enough about where a variable might be relevant. I’m too
stuck in what I did to think well about what I should have been.

Test complexity partially compensates for my failings: it leads to variables
being set to unexpected values that turn out to have an effect.

Variety helps: I try not to set “irrelevant” variables to the same value all
the time.

I could insist on testing every method against every distinct value of every
variable, but I don’t have time. So I rely on thought, supplemented by
dumb luck.

Page 101

101

State Machines

empty

partial

full

push

push

pop

pop

push/error

pop/error

three elements for simplicity

Here’s a related application of the same idea.

Some people sometimes model classes or systems as state machines.
State diagrams like this one can make the system easier to understand.

Page 102

102

Omissions to Worry About

• A state that should be considered isn’t

Object pop() throws StackEmpty {
…

}

Object peek() throws StackEmpty {
try {

return myValues.lastElement();
} catch (NoSuchElementException e) {

throw new StackEmpty();
}

}

A problem that sometimes happens is that a particular method that should
take account of the state does not.

In this example, the Stack.pop() method behaves correctly when the
stack is empty. Whoever coded the Stack.peek() method forgot about that
case (that state), and left out the underlined italicized code. An exception
is thrown (by accident), but not the right one.

Page 103

103

Check the Complete State Table

method5

method4

method3

method2

method1

state5state4state3state2state1state
event

In theory, a state table forces you to consider what should happen in
every combination of state and event. That makes it better (for finding
problems) than a state diagram, which allows you to inconspicuously
leave out events.

In practice, it’s hard not to have your mind deadened as you’re going
through the exercise. For example, it’s easy to just transcribe the diagram
into the table and then more-or-less mindlessly fill in all the empty cells
with some error action, without really thinking about what should go there.

For this reason, some recommend that every state/event transition be
explicitly tested. I think that’s another cost/value tradeoff, like all the rest
in this course.

Indeed, testing is all about balancing cost and value under conditions of
extreme uncertainty.

Page 104

104

Outline

• Test design
–three techniques
–tips for increasing bug-finding power
–two more techniques

• Test implementation
–should this test be automated?
–test suite maintenance
½test implementation tips

We’ll now switch gears back to test implementation.

Page 105

105

When To Automate?

• When the power of the design
exceeds the cost of automation

• Too late to improve the power of
the design

• Reduce the cost of implementation

Recall that you should automate a test when its ability to find likely bugs
exceeds the cost of automation. Once you’ve designed a test, it’s too late
to improve its power. But you can reduce its cost.

Page 106

106

Simplifying the Tests (1):
Add Test Support Code

• You’ll want a toString() anyway

expr = …
assert(expr instanceof ExprOr);
assert(((ExprOr)expr).leftChild instanceOf ExprNot)
…

expr = …
assert(expr.toString().equals(“!a || b”));

You’ve seen this example before. Rather than writing the code to check
each element of an Expr, I use the toString() method. I wrote the
toString() method specifically for testing, but I was hardly surprised to find
that it’s useful for debugging and also came in handy for printing results
back to the user.

It is also often possible to take debugging support code and, with only a
tiny amount of effort, make it useful for testing. (The effort is usually to do
things like suppress irrelevant and changeable information. For example,
C programmers will often write debugging routines that print pointer
addresses. Those change from run to run, so they can’t be used as is in
tests. Debug logs with timestamps present similar problems.)

Page 107

107

Simplifying Tests (2):
Violate Encapsulation

// should be in Backtrack state. If so,
// an accum() should cause a relay()
// to return FALSE.

assert(machine.state == machine.BACKTRACK);

Classes serve as encapsulation boundaries, hiding interior detail from the
outside world.

That outside world is usually taken to be composed of other programmers
who want to incorrectly couple their code to the details of your
implementation, making their code fragile in the face of changes (or
making it impossible for you to change your code, practically speaking).

Unfortunately, your tests are part of that outside world. Internal state can
be invisible to them (even if they’re in the same package as the class
under test, which I recommend).

In the testing literature, you often see descriptions of elaborate ways to
infer what the state must be. Suppose the class implements a state
machine. Your test wants to check that a particular action caused a
transition into the BACKTRACK state. You could do that by issuing a
sequence of further actions that would only work if the state machine is
really in the BACKTRACK state.

Or, you could just rip back the covers and look. That’s what I recommend.
Expose (to the package) internal state that the test needs.

Page 108

108

Simplifying Tests (3):
Test Partial Correctness

assert(connections.count <= 100);

Sometimes doing a complete check of correctness isn’t possible.
Suppose your tests set up some number of connections (whatever a
connection is). For some reason, it’s difficult to know exactly how many
connections is correct, but more than one hundred is certainly incorrect.

So only check what you affordably can.

This principle applies elsewhere. If there are several things you could
check, some of which are hard, check only the few that are easy.

Page 109

109

Simplifying Tests (4):
Semi-Automated Tests

• Automated setup, but not
automated execution

• Automated invocation, but not
automated checking
–print what to check

• Etc.

“Manual” and “automated” are two ends of a continuum. You could have
many types of semi-automated tests.

For example, you might have a bunch of tests that would be easy to
automate, except that each needs a network connection. The network
connection is hard to setup up automatedly, easy to set up by hand. In
that case, you could set the connection up by hand, then run the tests.
Not as nice as full automation, but perhaps the optimal tradeoff.

It seems that my most common semi-automated test is one where the
input is automatically generated, but the output is checked by hand. In
that case, when I run my test, its output looks something like this:

% make run

Check file test1.out for the following:

__ the frizzbat start message has today’s date

__ no boojum precedes the first snark

__ scan to see that there are no wrapped lines

The specific list makes me less likely to look at something that’s wrong
and think it’s OK because my mind has been dulled by the boredom of
looking at test output.

Page 110

110

Stubs: An Often Illegitimate
Way

• Simplicity (maybe) at the cost of value

Class BindingSet

Boolean eval(…)

!

jU
n

it

!

radians vs. degrees

Test setup is often difficult. You may need to put files on disk, set up
databases, establish network connections, etc. etc. etc. All this to test
your simple little method!

Or, perhaps, your method uses a class that someone else is writing.
They’re not done yet, but you are. You want to run your tests, show that
your code works, and move on.

It is tempting to use stubs. Instead of setting up a database to return the
correct value, write a fake routine that returns what the database access
routine would have.

There are two problems with stubs.

• Any misconceptions you have about the called class will be
implemented in the stub. Suppose, for example, that the stubbed-out
class is for trigonometric functions that haven’t been written yet. You think
the functions will operate in radians. The implementer thinks degrees.
Your stub will be in radians, and all your tests will pass… until the real
code comes along.

• Remember that some fraction of bugs that your tests find will be in the
methods they indirectly exercise. They can’t exercise those methods if
they’re stubbed out.

Sometimes stubs are necessary, but use them as little as possible.

Page 111

111

Self-Checking

Solver solver = new Solver(expr);
System.out.println(… the solution …);
if (!solver.isCorrect(expr))

System.out.println(solver.describeIncorrectness());

It can be useful to have the code check itself on whatever input it
happens to get.

For example, I’ve shown you a program that generates test ideas from
boolean expressions. Those ideas (descriptions of BindingSets) are
supposed to distinguish the expression that’s been given from a set of
variant expressions. For example, values of A, B, and C that distinguish
A||(B&&C) from these variants:

The algorithm to create the BindingSets doesn’t explicitly use the
variants. However, after calculating the solution, the program takes the
time to generate the variants and check that every one of them evaluates
differently than the original for at least one of the BindingSets.

The check probably takes quite a bit more time than calculating the result
does. But is anyone going to care that the answer that comes in .05
seconds could have come in .01?

Self-checks are not a good substitute for planned tests. The bugs they
discover come too late, and you’re never sure what cases have been
tried. But they’re useful when the action they take is less harmful than a
wrong answer from the program. They’re nice in beta programs.

A||CA||BB&&CA

A||B&&!CA||!B&&CA||B||C

A||!(B&&C)!A||B&&CA&&B&&C(A||B)&&C

Page 112

112

Assertions

class BindingSet {
…
Boolean eval(Expr expr) {

Assertion.test(value != null);
…

}
…

The code in the previous slide checked a postcondition, something that
must be true of the result. Checking postconditions is good when it can be
done affordably, when the code that checks isn’t likely to share errors with
the code that creates the result, and when something useful can be done
when the postcondition isn’t satisfied.

You can also check a precondition, something that the caller is
supposed to ensure. In the case on the slide, the caller is not supposed to
send in a null. Rather than trusting, I verify. If the test fails, the
Assertion.test method throws an AssertionFailed exception.

The code used in the check is an Assertion package I wrote some years
ago. You can find it at <http://www.visibleworkings.com/trace>.

(In actual fact, I don’t have an assertion at that point in the program, since
the code immediately following will obviously throw its own exception
when it gets the null pointer.)

Bertrand Meyer’s Object-Oriented Software Construction had a good
discussion of preconditions and postconditions in the first edition. I
haven’t read the second edition. His Eiffel language has them built in.

Page 113

113

That’s All

This is the end of my material. Thank you for reading.

Page 114

114

Where’s the Catalog?

• www.testing.com/writings/short-
catalog.pdf

