
A Social Science of Design
Brian Marick (marick@testing.com, www.testing.com)

My position is that one Science of Design should be a science of people doing design. In the
beginning of a design project, relevant people agree there's no design. Eventually (we hope),
relevant people agree there is. What happens in between? What activities do people
characteristically perform? What resources do they use, and how? How do their actions depend
on their context? How do they marshal support, negotiate agreement, or bury disagreement? How
do people become "relevant people"? How do the answers to all these questions contribute to
successful vs. unsuccessful vs. unfinished designs?

In short, at least one Science of Design should be a social science, more akin to anthropology or
social studies of scientific practice than to physics.

Examples of research projects.
Let me be concrete. Here are two examples of the sort of research that should be done.

In vitro. Some people are, by common consent, great designers. Put them together in small
groups and have them work on something important to them. Give them time to do a serious
amount of work. Observe them carefully and record much data for later analysis (videotape their
work, archive intermediate copies, have ethnographers talk to them about what they're doing,
even record keystrokes).

In vivo. Thousands of groups are doing design right now. Send anthropologists (or people using
anthropologically-inspired methods) to selected groups. They will not be able to gather as much
data as in the in vitro case, but they will have at least two advantages. First, the less sheltered
environment will reveal new sources of design influence. Second, the visits can be periodic,
allowing observation of how decisions ripple forward through time.

Two risks to relevance - and how to cope. What would count as success.
In 1934, Karl Popper published The Logic of Scientific Discovery. It's an elegant description of
what it means for a scientific process to be rational. Scientists propose testable hypotheses. Other
scientists test them through experiment. When an experiment refutes a hypothesis, the rational
scientist discards it and searches for a new one.

A small problem: real scientists don't behave like that. Kuhn (1970) shows how anomalies
(refuted hypotheses) are ignored until something (precisely what, he doesn't specify) forces a
science into a time of crisis. Lakatos gives further examples (Lakatos 1987 and Motterlini 1999).
Feyerabend (1993) is the most exuberant in claiming that great scientists will, under necessity,
ignore all rules and, indeed, embrace logically contradictory situations. According to these
authors, Popper wrote a recipe for failure.

Here's the first risk. Software development attracts people fond of tidy logical structures. We see
that in the many proposals for software processes that feel so close to being automatable, that try
to wall off the human element. I fear the NSF is much more likely to fund people who will write
The Logic of Design Discovery than (following Feyerabend) Against Design Method. If the above
authors - and others like them - are correct, and if design shares characteristics with science, that
funding will not improve the state of actual software design.

The solution is to make use of the techniques - and, if possible, the researchers - who already
study scientific practice. (Pickering 1992 and Latour 1987 are good examples of this thread of
research.) It's my belief that what these authors have accomplished is applicable to software

design. For example, Pickering (1995) tells the story of Hamilton's discovery of quaternions (a
mathematical abstraction). Last summer, I spoke with Ward Cunningham, surely one of today's
great designers. He told the story of how he and his team invented "advancers"1, an abstraction in
a bond trading application. I was struck by the parallels between the two stories - both can be
described in Pickering's terminology of resistance, accommodation, bridging, and extension. If
designers were familiar with those ideas, might they not design better? I think so.

But… note my qualification: "if designers were familiar with those ideas…" It appears that social
studies of science have had little effect on the actual practice of science. There are a variety of
reasons. One is that they've gotten tangled up in "the science wars"2, specifically the issue of
whether the social processes of science call into question its claims about objective reality. That
shouldn't be a problem in software: it's hard to see many people getting upset at the notion that a
Smalltalk class named Advancer is a social invention, not a reflection of reality.

But another reason the studies haven't affected practice, it seems to me, is that scientists aren't
their intended audience, any more than sociologists are the intended audience for an article in
Physics of Plasmas. So the literature is fairly inaccessible to software people (except for oddballs
like me). And here's the second risk: the same thing could happen to a social science of design.

The NSF should make it clear that funding a social science of design is a bad use of the public's
money unless one of the results is a publication with the effect on practice of Gamma et. al.'s
Design Patterns (1995). Funding should include money for popularizing the science of design. A
successful research program would win the Jolt software productivity award as well as help
someone gain tenure.

My background.
I am an independent software consultant, best known in the testing community. My main current
interest is in how checked examples (tests) can be used to provoke programmers to write the right
program. I am the author of The Craft of Software Testing (1995), one of the authors of the
"Manifesto for Agile Software Development" (www.agilemanifesto.org), a newly-elected board
member for the Agile Alliance nonprofit (www.agilealliance.org), program chair for the 10th

Pattern Languages of Programs conference, an editor for Software Testing and Quality
Engineering magazine (www.stqemagazine.com), and long-time member of Ralph Johnson's
software architecture reading group.

References.
Feyerabend, Paul. 1993. Against Method (3rd edition).
Gamma, Helm, Johnson, and Vlissades. 1995. Design Patterns
Kuhn, Thomas. 1970. The Structure of Scientific Revolutions (2nd edition).
Lakatos, Imre. 1978. The Methodology of Scientific Research Programmes.
Latour, Bruno. 1987. Science in Action.
Motterlini, Matteo (ed). 1999. For and Against Method. See specifically "Lectures on Scientific
 Method".
Pickering, Andrew (ed). 1992. Science as Practice and Culture.
Pickering, Andrew. 1995. The Mangle of Practice: Time, Agency, and Science.
Popper, Karl. 1934. The Logic of Scientific Discovery.

1 c2.com/cgi/wiki?WhatIsAnAdvancer
2 members.tripod.com/ScienceWars

