
This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

Methodology Work Is Ontology Work
Brian Marick, marick@visibleworkings.com

I argue that a successful switch from one methodology to another
requires a switch from one ontology to another. Large-scale
adoption of a new methodology means "infecting" people with new
ideas about what sorts of things there are in the (software
development) world and how those things hang together. The
paper ends with some suggestions to methodology creators about
how to design methodologies that encourage the needed "gestalt
switch".

In this paper, I'm going to abuse the word "ontology". In philosophy, an ontology is an
inventory of the kinds of things that actually exist, and (often) of the kinds of relations
that can exist between those things. My abuse is that I want ontology to be active, to
drive people's actions. I'm particularly interested in unreflective actions, actions people
take because they are the obvious thing to do in a situation, given the way the world is.
Here are some examples of ontologies.
Example 1: Emerson
Cornel West (1989) attributes a particular worldview to Ralph Waldo Emerson in his
(West's) The American Evasion of Philosophy.

1. Emerson held that "the basic nature of things, the fundamental way the world is,
is itself incomplete and in flux" (p. 15). Moreover, the world and humans are
bound up together: the world is the result of the work of people, and it actively
solicits "the experimental makings, workings, and doings of human beings" (p.
15).

2. Emerson believed that this basic nature makes the world joyous. It gives people
an opportunity to exercise their native powers with success, because the world is
fundamentally supportive of human striving.

3. And finally, Emerson believed that human powers haven't yet been fully
unleashed, but they can be through the "genius of individuals willing to rely on
and trust themselves" (p. 16).

I do not believe this passage means that Emerson was an optimistic guy and thought that
things would pretty much work out in the end. I believe that, to him, it was a fact that the
world beckons to humans to change it, and that the world just naturally fits together with
individuals in a way that makes such change work, once individuals wiggle their way into
the right relationship with it. A person who believes that will behave differently than
someone who believes the world conspires against us. He'll behave differently than a
strict materialist, someone who believes the world is fundamentally indifferent (as do,
probably, most programmers).

2

Example 2: cows
My wife Dawn teaches veterinary students how to cure cows. Each sick cow is assigned a
student, and each day that student has to decide—among other things—whether the cow
is “bright” or “dull.” Students learn the difference through exposure to a series of
examples where they make judgments that Dawn then corrects. At the end of the process,
students can reliably judge between bright and dull, though they cannot articulate any
definition of the terms. In fact, the notion of defining them seems somewhat beside the
point. Cows simply are either bright or dull, the way the student herself is either alert or
sleepy, or the way a joke is either funny or lame. Any explanation of how she knows
seems contrived and after the fact. It's as if the student's perceptual world has expanded.
For purposes of this paper, I'd say there's a new kind of thing in her ontology: brightness.
Moreover, the category has an effect in the world: a trained veterinarian is unable to
ignore her perceptions, unable not to use them in her diagnostic work.
Example 3: programmers

So, I don't start with a story like "The game has Squares." I start
with something like: "Player can place a piece on a square."[...]
What I am not doing is worrying about overall game design. [...]
[Ideally], I let the design emerge.

-- William Caputo1

Beck has those rules for properly-factored code: 1) runs all the
tests, 2) contains no duplication, 3) expresses every idea you want
to express, 4) minimal number of classes and methods. When you
work with these rules, you pay attention only to micro-design
matters.
When I used to watch Beck do this, I was sure he was really doing
macro design "in his head" and just not talking about it, because
you can see the design taking shape, but he never seems to be
doing anything directed to the design. So I started trying it. What I
experience is that I am never doing anything directed to macro
design or architecture: just making small changes, removing
duplication, improving the expressiveness of little patches of code.
Yet the overall design of the system improves. I swear I'm not
doing it.

-- Ron Jeffries2

Whereas Emerson might have believed that design comes through the "genius of
individuals willing to rely on and trust themselves," these two notable programmers
believe designs come through the actions of not-necessarily-geniuses willing to rely on
and trust a particular discipline, specifically what's nowadays called test-driven design
and refactoring (Beck 2002, Astels 2003, Fowler 1999, Wake 2004).

1 testdrivendevelopment Yahoogroups mailing list, March 9 2003.
2 Agile Manifesto authors' mailing list, July 19 2001.

3

However, I claim that Caputo and Jeffries do share much of a worldview with Emerson.
In their world, the basic nature of a program is to be incomplete and flux, to solicit the
workings of human beings. Given the right practices, social organizations, workspace
arrangement, and tools, the software will be fundamentally supportive of human striving.
Software has it in its nature to be soft, if only we know the right way to accommodate
that nature.
They are subscribers to the Agile ontology. That's distinct from the standard "software
engineering" ontology, which is much more dour. In it, entropy is a fundamental thing in
the world. Software development is a struggle against entropy that will inevitably fail as
the product devolves into Foote and Yoder's "big ball of mud" (2000).
Whether the Agile ontology is true or not is not at issue in this paper. What I'm
concerned with is how people are moved from one ontology to the other. In a personal
communication, Caputo says that he believes his worldview was always compatible with
the Agile methods. But many others didn't start that way. They became enthusiastic
adopters of the Agile methods despite starting somewhere else. How did that happen?
How can promoters and designers of future methodologies make it happen again?
Part of the answer must come from a detailed history of the Agile methods, which does
not yet exist. In the meantime, I want to draw analogies with another field, one that also
undergoes sweeping changes, one that most software people feel is admirable and worthy
of emulation. I mean science.
Kuhn (1962) popularized the idea that science is not a matter of steady progress. Instead,
its history contains major disruptions that he calls revolutions. Both Kuhn and
Feyerabend (1975) emphasize that scientists on either side of a revolutionary divide
cannot communicate. The technical term for that is incommensurability.3 For example,
Galileo and the Aristotelians he debated meant different things by velocity. In retrospect,
we can gloss the difference as between instantaneous and average velocity, but that
doesn't capture the understandings of the participants. To the Aristotelians, velocity -
movement, change - was intimately bound up with a whole range of topics. The same
theory that accounts for the falling of a ball and the movement of a pendulum should also
account for the rising of flames and the growth of trees.4 Galileo discards many of those
topics - he says nothing about fire - thereby altering a whole network of meanings. There
is no accessible shared meaning that allows either party to express their theory in the
other party's terms.
The same is true of methodologies. I am the moderator of the agile-testing Yahoogroups
mailing list. It's an enormously frustrating experience. To oversimplify, there are two
factions. One is the "conventional" testers, to whom testing is essentially about finding
bugs. The other is the Agile programmers, to whom testing is essentially not about bugs.

3 See chapter 5 of Hacking (1983) for a nice description of different kinds of incommensurability.
4 To an Aristotelian, objects try to reach their natural position. For a ball or a pendulum bob, that's down.
For fire or a growing tree, it's up. To an Aristotelian, pendulums are much less interesting than balls,
because a pendulum bob is a "tortured ball" that's prevented from falling in the natural way. To Galileo, a
pendulum was a revealing case; to an Aristotelian, it obscures the essential. (This may be an example of
what Pickering (1995) calls machinic incommensurability.)

4

Rather, it's about providing examples that guide the programming process. Whenever this
point is made, it slips away. Whenever one definition is granted for the sake of
discussion, the dispute sneaks back in through its implicit connection to other definitions
and other issues. This is an ontology conflict, and conversations are not a particularly
productive way of resolving such.
What is, then? Kuhn gives some help. He likens revolutionary theory changes to gestalt
shifts of perception, such as the way a Necker cube suddenly switches from one
orientation to another. Kuhn also talks of how the
perception of a new "paradigm" is instilled in students in
a way reminiscent of the way my wife instills a perception
of "bright cows" in her students: they are drilled in
example after variant example, comparing each new
example to others, especially to the exemplars found in
textbooks. The paradigm is acquired through practice, and
new students enter the field knowing it. The old paradigm
dies off with its adherents. However, this is perhaps not so
helpful in the software field, where the textbooks seem to
get written after the methodology is already established.
I think another student of science, Imre Lakatos, gives more help than Kuhn does. He
devised his "methodology of scientific research programmes" (1978) to answer the
question of when it is rational for a scientist to pursue a new research program. He was
seeking a middle ground between those he viewed as irrationalists because they provided
no solid rules for the advancement of science (Kuhn, Feyerabend), and rationalists like
Popper (1934) who provided solid, simple rules whose only disadvantage is that they
don't work and can't work.5 He aimed to do a "rational reconstruction" of the history of
scientific change and extract rules of rationality that would work.
To my mind, he failed. But the failure was of a productive sort. His rules aren't sufficient,
but they're convincing. That is, I think they describe a process by which scientists come
to switch paradigms (or ontologies), even if that switch is, at bottom, as irrational as it is
rational. In this paper, I'm going to assume that some of these same rules will also
convince software developers. (I'm using here only the most obviously applicable of
Lakatos's rules.)

Lakatos on attracting ontology change
Lakatos claims that at the heart of any scientific research programme is a "hard core of
two, three, or maximum five postulates" (Motterlini 1993, p. 103). For example,
Newton's theory has a hard core of three laws of dynamics plus a law of gravitation.

5 Popper holds that a rational scientist puts forth a testable hypothesis. If an experiment refutes it, the
rational scientist abandons it. No hypothesis is ever proven; at best, it's tentatively accepted because it's not
(yet) been refuted. Lakatos points out that, by this rule, Newton was a lousy scientist, since his laws of
motion were easily refuted. See Laktos's "lectures on scientific method" in Motterlini 1999. And also see
below.

5

The same might be true of successful methodologies. The Manifesto for Agile Software
Development (2001) has four core values. Extreme Programming (Beck 2000) has the
same number.
I don't know why a limited number is helpful, though I can speculate that they're easier to
remember. They also fit our bias toward simplicity, elegance, and getting a lot of
emergent payback from a small conceptual investment.
The lesson to methodologists is that the core postulates should be developed with care.
Most important, they should be developed and expressed, not left implicit (as they so
often are).
Lakatos also concentrates on novel, striking success. Scientific "wins" are not just a
matter of avoiding experimental refutation. What convinced holdouts of Newton's theory
of gravitation? According to Lakatos, it was Edmund Halley's successful prediction (to
within a minute) of the return date of the comet that now bears his name. What tipped
scientific opinion toward Einstein's theory of general relativity? The famous experiment
in which the bending of light was observed during a solar eclipse.
What's the equivalent in software development? To grab mindshare, methodologists
should use a surprising method to achieve unexpected success with a long-intractable
problem. Consider "requirements churn." The traditional solutions revolve around
eliminating the churn or planning an infrastructure tuned to likely changes. The Agile
methods strikingly invert the dynamic by treating churn as good rather than bad: they
assert that a team and a product can be "trained" into accepting changing requirements by
making them accept changing requirements from the very beginning. I've met people -
programmers and product owners - for whom the result was as striking as pointing a
telescope where Halley said to and seeing a comet. They've bought into the programme;
they want to use Agile methods on other projects, just as excited scientists wanted to use
general relativity in all sorts of new places.
Next, Laktos says a scientific research programme must be progressive. It should
continue making successful predictions that follow from elaborations of its hard core.
Newton's theory went from success to success. General relativity didn't stop being useful
after Eddington's 1919 observation of the eclipse.
Similarly, software methodologies should continually throw up new ways of working.
For example, the XP practice of having programmers write tests before modifying a class
is now being extended. People are writing whole-product tests (examples of
requirements) before starting the coding. That's a straightforward extension. What's more
interesting is how this extension is tying into other practices. These tests are being used
as a way of improving and reinforcing the face-to-face communication that drives an
Agile team. (Tests give the team something to talk about.) The inevitable difficulties in
implementing tests that both "speak the customer's language" and also drive the product
are best solved by blurring the boundaries between "testing" and "programming",
reinforcing both the XP emphasis on "Whole Team" (Jeffries 2001) and also the general
Agile tendency to favor generalists over specialists.
Continuing extension - continuing greater success - attracts people. Everyone likes a
winner. More importantly (for this paper), it reinforces ontology. When people on a

6

project have a problem and the coach says "Whole team, guys. It's not his problem, it's
our problem" and the team thereupon makes progress, it makes the concept "Whole
Team" more concrete, more real, more something that's used reflexively. Moreover,
problem-solving that depends upon different pieces of the ontology reinforces the way it
all hangs together.
Scientific programmes also progress by resolutely ignoring counterexamples. For
example, Newton did not discard his theory when he found it did not correctly predict the
observed motion of the moon. When Le Verrier discovered the motion of Mercury's
perihelion was faster than predicted by Newton, people shrugged and waited for Einstein
to explain it.
Research programmes can even proceed despite their obvious falsity. Rutherford's model
of the atom (mostly empty space, electrons orbiting a nucleus) violated Maxwell's
equations, which were believed to be rock solid. They were certainly much more
compelling than the new data Rutherford's model was intended to explain. But
Rutherford's programme essentially said, "We'll figure out how to reconcile with
Maxwell later." (The solution was quantized orbits - the "Bohr atom".) Lakatos says,
"Theories grow in a sea of anomalies, and counterexamples are merrily ignored."
(Motterlini, p. 99). This ignoring is essential, since a replacement theory cannot,
especially in the beginning, hope to predict everything that a long-established theory can.
For this reason, a methodology should begin with a restricted scope, and its developers
should not worry that they don't have an answer for every problem that rival
methodologies claim to solve. They should not engage the rivals on those grounds.
Rather, they should explicitly put them off for the future. In the now, they should
concentrate on striking achievements and progressive expansion of the methodology's
scope of applicability.6

The preface to Extreme Programming Explained does the right thing: "XP is designed to
work with projects that can be built by teams of two to ten programmers, that aren't
sharply constrained by the existing computing environment, and where a reasonable job
of executing tests can be done in a fraction of a day." (Beck 2000, p. xviii)
Not only does eschewing universal claims let the methodologist and methodology users
define success, rather than having it defined for them, it also gives scope for making the
methodology progressive. Early work in Agile methods focused on completely co-located
teams. More recently, work has been done on remote teams, but in an Agile context that
emphasizes the roles of trust-building and constant, fluid conversation (Sepulveda 2003;
Hunt, Thomas, and Sepulveda 2004).

Bringing in perception
Lakatos, like Popper and many other students of science, preferred theorists to
experimentalists. His methodology of scientific research programmes is all about the
relationship of theories to one another. Experiment merely serves to provide

6 Compare also to Gabriel's "Worse is Better": "The concept known as 'worse is better' holds that in
software making (and perhaps in other arenas as well) it is better to start with a minimal creation and grow
it as needed." (Gabriel web)

7

confirmations or to throw up anomalies to be dealt with whenever the research
programme gets around to it. Experiment is not creative: the action takes place in the
world of thought, not the physical world.
Later strands of science studies have placed much more emphasis on scientific practice,
and they have much to offer.7 Here, however, I'll step even further from rationality and
look at perception.
Suppose you're a bee navigating down a tunnel. You don't want to crash into either side.
How can you do it? Well, consider what happens as you
drift toward the right side. Features on the right wall will
appear to go by you faster, features on the left slower. So
just have that specific perception trigger changes in your
wing flapping that shift you to the left8. You don't need a
"world model" with any accuracy; rather, to be a
successful bee, you need a diverse set of perceptions that
are well tuned to the tasks you, as a bee, need to perform.
You are, in fact, more successful if the perception
bypasses the brain and simply causes you to do the right
thing.9

Methodologists should be alert for opportunities to align
perception with ontology-building. Consider, for example,
FitNesse, a wiki used to organize and execute Fit tests.10

Some teams put a machine in the project bullpen with the
FitNesse pages always visible. This encourages random
people to wander past, glance at the current status of the
acceptance tests, even run a few themselves. This is a variant form of Cockburn's (2001)
information radiators or Jeffries' (2004) Big Visible Charts. It reinforces various parts of
one Agile ontology: that feedback is an essential part of the world, a part that should be
as quick and continuous as possible; that tests are for communication between
programmers and business experts; and that communal workspaces generate learning.
The team members see feedback all around them, the same way my wife sees bright
cows.
Moreover, the constant perception of test status short-circuits rationality—and
rationalizing. If the rule is that tests always pass, the sight of red on the test-display
machine triggers an immediate impulse to fix the problem. That perception is stronger
than a mere recitation of fact: "a test is failing." Perceptual patterns have the same
(perhaps greater) effect in the absence of a specific rule. In a project that's tracking the
number of passed vs. failed tests, the chart on the next page (Jeffries 2004) should help
produce a visceral reaction and desire to make the badness go away. (If you're reading a

7 Pickering 1992, Latour 1988, or Latour and Woolgar 1986 are good sources.
8 Srinivasan et al. 1991. See also http://cvs.anu.edu.au/insect/
9 Philip Agre (1997) writes well on the deficiencies of world models.
10 For FitNess, see http://www.fitnesse.org; for wiki see Leuf 2001 or Rupley 2003; for Fit, see
http://fit.c2.com.

8

black-and-white copy, the top band is red and the bottom green.) That might counter
some of the usual "we'll have to fix that someday, but… not today" rationalization.
Ontologies are normally what Heidegger called
ready-to-hand.11 Just as one doesn't think about
how to hold a hammer when pounding nails, one
shouldn't have to think about the methodology,
its ontology, and its rules during the normal pace
of a project: one should simply act appropriately.
These sorts of intellectual reflexes don't just
happen. They are trained in, and it's part of the
methodologist's job to arrange perceptions so
that they reinforce the methodology.12

My position
Methodologies do not succeed because they are aligned with some platonic Right Way to
build software. Methodologies succeed because people make them succeed. People begin
with an ontology—a theory of the world of software—and build tools, techniques, social
relations, habits, arrangements of the physical world, and revised ontologies that all hang
together. In this methodology-building loop, I believe ontology is critical. Find the right
ontology and the loop becomes progressive. I hope that this paper helps methodologists
see better how to create and transmit ontologies.

References
Agre, Philip (1997)

Cognition and Human Experience.
Astels, David (2003)

Test-Driven Development: A Practical Guide.
Beck, Kent (2000)

Extreme Programming Explained: Embrace Change.
— (2002)

Test-Driven Development: By Example.
Cockburn, Alistair (2001)

Agile Software Development.
Dreyfus, Hubert (1991)

Being-in-the-World: A Commentary on Heidegger's Being and Time, Division 1.
Feyerabend, Paul (1975)

Against Method.
Foote, Brian and Joseph Yoder (2000)

"Big Ball of Mud", in Pattern Languages of Program Design 4, ed. Harrison, Foote, and Rohnert. Also
http://www.laputan.org/mud/mud.html (accessed May 2004).

Fowler, Martin (1999)
Refactoring: Improving the Design of Existing Code.

11 Heidegger is notoriously opaque. Winograd and Flores (1987) apply his ideas to software design.
Dreyfus (1991) is an extended commentary. It's not as opaque as the little Heidegger I've struggled through.
12 This is not to say that reflex should replace thought, just that thought has its place—which is not every
place. When there's a breakdown (another Heideggerian term), the methodology (including its underlying
ontology) should become present-to-hand, subject to reflection and change. But getting people across the
gestalt shift barrier seems to me harder than getting them to debate methodologies. (To put it mildly.)

9

Gabriel, Richard P. (web)
"Worse is Better", http://www.dreamsongs.com/WorseIsBetter.html (accessed July 2004).

Hacking, Ian (1983)
Representing and Intervening: Introductory Topics in the Philosophy of Natural Science.

Hunt, Andrew, Dave Thomas, and Christian Sepulveda (2004)
"Remote Control", Better Software Magazine, Vol. 6, no. 4, April 2004.

Jeffries, Ron (2001)
"What is Extreme Programming" http://www.xprogramming.com/xpmag/whatisxp.htm (accessed May
2004).

— (2004)
"Big Visible Charts" http://www.xprogramming.com/xpmag/BigVisibleCharts.htm (accessed May
2004).

Kuhn, Thomas (1962)
The Structure of Scientific Revolutions.

Lakatos, Imre (1978)
The Methodology of Scientific Research Programmes. Philosophical Papers, Volume 1.

Latour, Bruno (1988)
Science in Action: How to Follow Scientists and Engineers Through Society.

— and Steve Woolgar (1986)
Laboratory Life: The Construction of Scientific Facts (2/e).

Leuf, Bo and Ward Cunningham (2001)
The Wiki Way: Collaboration and Sharing on the Internet.

Manifesto (2001)
"The Manifesto for Agile Software Development", http://www.agilemanifesto.org (accessed July
2004).

Motterlini, Matteo ed. (1999)
For and Against Method.

Pickering, Andrew ed. (1992)
Science as Practice and Culture.

— (1995)
The Mangle of Practice: Time, Agency, and Science.

Popper, Karl (1934)
The Logic of Scientific Discovery.

Rupley, Sebastian (2003)
"What's a Wiki?" http://www.pcmag.com/article2/0,4149,1071705,00.asp (accessed May 2004).

Sepulveda, Christian (2003)
"Agile Development and Remote Teams: Learning to Love the Phone". In Proceedings of Agile
Development Conference 2003. http://www.christiansepulveda.com/papers/remote_agile_adc2003.pdf
(accessed May 2004).

Srinivasan, M.V., M. Lehrer, W.H. Kirchner and S.W. Zhang (1991)
Range perception through apparent image speed in freely-flying honeybees. Vis. Neurosci. 6, 519-535.

Wake, William (2004)
Refactoring Workbook.

West, Cornel (1989)
The American Evasion of Philosophy: A Genealogy of Pragmatism.

Winograd, Terry and Fernando Flores (1987)
Understanding Computers and Cognition: A New Foundation for Design.

