
A Workbook for
Practicing Test-Driven Design

Brian Marick
marick@exampler.com

I’ve come to think that the best way of learning Test-Driven Design (TDD) is to add on to
some code that was developed that way. This package provides such code together
with a list of features to add. I hope that teaches not only TDD but also:

1. How to use tests to understand code.

2. How TDD lets you cope with “requirements churn.”

3. How a test-driven design can leave you, at the end, with code that looks as if it had
been cleverly designed with full knowledge of requirements right from the beginning
- even though many of the requirements came after the first version was finished.

Important: I assume you’ve already read up on TDD. I’ve read these books: Pragmatic
Unit Testing (Hunt and Thomas), Test Driven Development: By Example (Beck), and
Test-Driven Development: A Practical Guide (Astels). There are many other good books.
Here are the top two Google hits for “test-driven design”: “Introduction to test driven de-
sign” (Ambler) <http://www.agiledata.org/essays/tdd.html> and “Test-driven develop-
ment” (Wikipedia) <http://en.wikipedia.org/wiki/Test_driven_development>.

You also should know Java and some programming environment. Although I provide an
ant script that runs the tests, I strongly encourage you to take the time to figure out how
to run the tests from within your programming environment. TDD thrives on quick feed-
back.

What the package does
 2

Important classes
 3

Disk layout
 4

Features to add
 5

Acknowledgements: This code is inspired by the Java interface to the Hierarchical Data
Format, an open-source library for storage of large amounts of scientific data, currently
supported by The HDF Group <http://www.hdfgroup.org/>. Thanks to Peter Cao and
Quincey Koziol for their explanations. This implementation uses no HDF code, and any
stupidities in it are my fault, not theirs.

 Tuesday, June 26, 2007

Copyright (c) 2007 by Brian Marick (marick@exampler.com). Released under a Creative Commons
Attribution-ShareAlike 3.0 license. See http://creativecommons.org/licenses/by-sa/3.0/.

DRAFT

What the package does
This package contains code to convert between the Land of Java and an on-disk data
format. As of now, each member of a dataset is a Java array of numbers. Each array
has the same length, called the dimension. A 2-member dataset looks like this:

6543210

6.55.54.53.52.51.50.5

int[7]

double[7]

Datasets are defined member-by-member:

 int[] ints = {0, 1, 2, 3, 4, 5, 6, 7 };
 double[] doubles = {0.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 };
	

 ...
	

 dataset.defineMemberFor(ints);
	

 dataset.defineMemberFor(doubles);

The above definition means that the dataset should be prepared to store 4-byte integers
and 8-byte floating point numbers to disk. The Java bit layout is replicated on disk.

Java defaults can be overridden. Perhaps all the integers should be stored in three
bytes. That can be declared like this:

 dataset.defineMember(Like.integer(3));

Clients of this code can also control byte order:

 dataset.defineMember(Like.integer(3, ByteOrder.LITTLE_ENDIAN));

BIG_ENDIAN is the default (as it is in Java). For I/O speed, you can also ask the code to
use the native ordering, whichever it is.

That's pretty much it. The main classes are sketched on the next page. You should be
able to best understand the code in this order:

 CompoundDatasetTests (then the code in CompoundDataset)

 PileOfBytesTest (then code in PileOfBytes)

 PileLayoutTest (then PileLayout)

 The various converters and their tests.

 Practicing Test-Driven Design

Brian Marick
 2
 marick@exampler.com

Important classes

Like

Pleasant-reading ways to
construct NumberDescriptions.

PileLayout

Knows where to find things on
disk. Communicates with

PileOfBytes through byte buffers.

Only class that knows the format
of an HDF file.

CompoundDataset

Holds a vector of Java data
(currently only number arrays).

Can stash the data to disk or read
from disk, doing conversions as

appropriate.

PileOfBytes

With the assistance of
Converters, this knows how to

read and write java data to disk as
raw bytes.

Uses PileLayout to know where
bytes should go.

NumberDescription

What a Converter needs to know
about what it's converting. A dumb

object.

Converter
Converter

ConverterConverter

Knows how to convert between
Java data and bytes. There is one

subclass for each kind of
conversion.*

* There are lots of subclasses that do almost
the same thing. They're needed to appease
Java's typechecker. In time, the hierarchy may
get deeper.

 Practicing Test-Driven Design

Brian Marick
 3
 marick@exampler.com

Disk layout

...

...

...

For each member, a block of bytes large enough to hold all its elements.

Number of dimensions (each member must have this many elements)

8 bytes, big-endian

Number of distinct members

4 bytes, big-endian

For each member, the type of that member's elements (e.g., INTEGER)

4 bytes, big-endian

For each member, the size (in bytes) of its elements (e.g., 4, 8)

4 bytes, big-endian

For each member, the endianness of its elements (big or little)

4 bytes, big-endian

 Practicing Test-Driven Design

Brian Marick
 4
 marick@exampler.com

Features to add
1. Currently, you can define a member by giving it a number description:

 dataset.defineMember(Like.integer(4, ByteOrder.BIG_ENDIAN));

Or you can define it “by example”:

 dataset.defineMemberFor(new int[50]);

Extend, test-first, the latter way so that that sizes and byte orders can be given:

 dataset.defineMemberFor(new int[50], 3);

	

 dataset.defineMemberFor(new int[50], 3, ByteOrder.LITTLE_ENDIAN);

2. Add the ability to read and write unsigned 4-byte integers, something like:

 dataset.defineMember(Like.unsignedInteger(4));

It seems to me that the resulting Java array should be of longs.

3. Add the ability to read and write arrays of Strings. The disk format is a block of n C-
strings (null-terminated 7-bit ASCII, aka US-ASCII, aka ISO646-US). So this:

 String[] { “foo”, “bar” }

would turn into this block of bytes:

\0rab\0oof

Because the array of strings must obey the dimensions of the entire dataset, the
code reading strings from disk will know how many null-terminated strings to read.

4. Oops. We changed our mind and want a new disk format for storing strings. This one
is as above, but it adds an 8-byte, bigendian prefix containing the number of bytes
devoted to the member (not including the prefix). The prefix makes it easier to skip
over blocks of code.

Because we have an influential legacy user, continue to read the old format. How-
ever, the code that writes the dataset should only write the new format.

5. We’ll change our mind one last time. To simplify things further, the PileLayout
should add a fourth per-member field (not just type, element size, and byte order). It
should be an 8-byte bigendian, and it marks the absolute byte index of the beginning

 Practicing Test-Driven Design

Brian Marick
 5
 marick@exampler.com

of the data for the member.

Although this really, truly is the last time we’ll change our mind, maybe it would be a
good idea to start the file off with a version number. (Hint: you can assume no exist-
ing dataset has enough members to need a left-most 1 bit in the number-of-
dimensions field.)

You must continue to support the two older ways to represent string data.

6. Time has passed and there’s no more need to support the old way of representing
Strings. Remove that code. (Strive to make your code look as if the latest string for-
mat had been planned from the beginning.)

7. A new feature: one of the dataset’s members can be a complete dataset itself. There
is no limit to how many nested datasets there can be.

8. The code as it stands will allow a client to store 8-byte longs into 4-byte unsigned
integers. Change the code so that it throws an exception in such a case. Add such
sanity checking for all the types (such as string characters that won’t fit into 7-bit
ASCII). Try to keep the error checking from turning the code into a confusing mass
of if statements.

 Practicing Test-Driven Design

Brian Marick
 6
 marick@exampler.com

